Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling spiral magnetism

26.04.2010
Photoemission experiments shed light on the origin of an enigmatic type of magnetism in iron

Iron is the most useful magnet in our daily life. It is a ‘ferromagnet’ at room temperature and ambient pressure, but displays a variety of other magnetic properties that depend on its crystallographic structure.

Now, using a technique called angle-resolved photoemission spectroscopy (ARPES) on iron thin films, Jun Miyawaki from the RIKEN SPring-8 Center, Harima, and colleagues have uncovered the origins of a particular type of magnetic order, called the spin spiral (SS), which has eluded understanding despite extensive experimental and theoretical efforts.

Magnetism in iron is associated with the spin, or quantum angular momentum, of the valence electrons of its atoms. In a ferromagnet the spins are parallel to each other; however, a structural change in the position of atoms in the crystal matrix of iron can order the spins into a spin spiral, such that the angle between the spins varies periodically.

Miyawaki says he was shocked when he realized that the electronic structure of SS-ordered iron was still an open question; it is fundamental to understanding the material’s behavior.

To elucidate the origin of this magneto-structural behavior, Miyawaki and colleagues studied ultrathin iron films consisting of eight monolayers with a ferromagnetic bilayer at the top and six SS-ordered monolayers below. The researchers used the ARPES technique to bombard the SS layers with soft x-ray photons and knock out electrons. Then they measured the intensities and angles of the emitted electrons. This yielded information about the electrons' energy and momenta from which they constructed Fermi surfaces to characterize and predict various properties of iron.

Crucially, the researchers successfully mapped the energy-momentum relationship for electrons moving in- and out-of-plane of the iron film separately. Miyawaki notes that this required a concerted effort to develop the necessary instrumentation by his team at RIKEN and a team at the Japan Synchrotron Radiation Research Institute (JASRI).

The experimental results showed stark differences with respect to the symmetries of the in-plane and out-of-plane Fermi surfaces. A detailed analysis revealed that the SS magnetic order is directly linked to electrons ‘inhabiting’ specific regions of the out-of-plane Fermi surface, thus providing direct information about its origin on a microscopic level.

These findings not only provide vital clues to theoretical studies, but also suggest that iron thin films may be used in spintronics devices based on the spin-transfer torque phenomenon, Miyawaki notes. “Because right- and left-handed spin spirals exert a different spin-transfer torque on spin-polarized electrons, iron thin films could serve as memory devices,” he says.

The corresponding author for this highlight is based at the Excitation Order Research Team, RIKEN SPring-8 Center

Journal information

1. Miyawaki, J., Chainani, A., Takata, Y., Mulazzi, M., Oura, M., Senba, Y., Ohashi, H. & Shin, S. Out-of-plane nesting driven spin spiral in ultrathin Fe/Cu(001) films. Physical Review Letters 104, 066407 (2010)

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.rikenresearch.riken.jp/eng/research/6249
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>