Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling spiral magnetism

26.04.2010
Photoemission experiments shed light on the origin of an enigmatic type of magnetism in iron

Iron is the most useful magnet in our daily life. It is a ‘ferromagnet’ at room temperature and ambient pressure, but displays a variety of other magnetic properties that depend on its crystallographic structure.

Now, using a technique called angle-resolved photoemission spectroscopy (ARPES) on iron thin films, Jun Miyawaki from the RIKEN SPring-8 Center, Harima, and colleagues have uncovered the origins of a particular type of magnetic order, called the spin spiral (SS), which has eluded understanding despite extensive experimental and theoretical efforts.

Magnetism in iron is associated with the spin, or quantum angular momentum, of the valence electrons of its atoms. In a ferromagnet the spins are parallel to each other; however, a structural change in the position of atoms in the crystal matrix of iron can order the spins into a spin spiral, such that the angle between the spins varies periodically.

Miyawaki says he was shocked when he realized that the electronic structure of SS-ordered iron was still an open question; it is fundamental to understanding the material’s behavior.

To elucidate the origin of this magneto-structural behavior, Miyawaki and colleagues studied ultrathin iron films consisting of eight monolayers with a ferromagnetic bilayer at the top and six SS-ordered monolayers below. The researchers used the ARPES technique to bombard the SS layers with soft x-ray photons and knock out electrons. Then they measured the intensities and angles of the emitted electrons. This yielded information about the electrons' energy and momenta from which they constructed Fermi surfaces to characterize and predict various properties of iron.

Crucially, the researchers successfully mapped the energy-momentum relationship for electrons moving in- and out-of-plane of the iron film separately. Miyawaki notes that this required a concerted effort to develop the necessary instrumentation by his team at RIKEN and a team at the Japan Synchrotron Radiation Research Institute (JASRI).

The experimental results showed stark differences with respect to the symmetries of the in-plane and out-of-plane Fermi surfaces. A detailed analysis revealed that the SS magnetic order is directly linked to electrons ‘inhabiting’ specific regions of the out-of-plane Fermi surface, thus providing direct information about its origin on a microscopic level.

These findings not only provide vital clues to theoretical studies, but also suggest that iron thin films may be used in spintronics devices based on the spin-transfer torque phenomenon, Miyawaki notes. “Because right- and left-handed spin spirals exert a different spin-transfer torque on spin-polarized electrons, iron thin films could serve as memory devices,” he says.

The corresponding author for this highlight is based at the Excitation Order Research Team, RIKEN SPring-8 Center

Journal information

1. Miyawaki, J., Chainani, A., Takata, Y., Mulazzi, M., Oura, M., Senba, Y., Ohashi, H. & Shin, S. Out-of-plane nesting driven spin spiral in ultrathin Fe/Cu(001) films. Physical Review Letters 104, 066407 (2010)

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.rikenresearch.riken.jp/eng/research/6249
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>