Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling spiral magnetism

26.04.2010
Photoemission experiments shed light on the origin of an enigmatic type of magnetism in iron

Iron is the most useful magnet in our daily life. It is a ‘ferromagnet’ at room temperature and ambient pressure, but displays a variety of other magnetic properties that depend on its crystallographic structure.

Now, using a technique called angle-resolved photoemission spectroscopy (ARPES) on iron thin films, Jun Miyawaki from the RIKEN SPring-8 Center, Harima, and colleagues have uncovered the origins of a particular type of magnetic order, called the spin spiral (SS), which has eluded understanding despite extensive experimental and theoretical efforts.

Magnetism in iron is associated with the spin, or quantum angular momentum, of the valence electrons of its atoms. In a ferromagnet the spins are parallel to each other; however, a structural change in the position of atoms in the crystal matrix of iron can order the spins into a spin spiral, such that the angle between the spins varies periodically.

Miyawaki says he was shocked when he realized that the electronic structure of SS-ordered iron was still an open question; it is fundamental to understanding the material’s behavior.

To elucidate the origin of this magneto-structural behavior, Miyawaki and colleagues studied ultrathin iron films consisting of eight monolayers with a ferromagnetic bilayer at the top and six SS-ordered monolayers below. The researchers used the ARPES technique to bombard the SS layers with soft x-ray photons and knock out electrons. Then they measured the intensities and angles of the emitted electrons. This yielded information about the electrons' energy and momenta from which they constructed Fermi surfaces to characterize and predict various properties of iron.

Crucially, the researchers successfully mapped the energy-momentum relationship for electrons moving in- and out-of-plane of the iron film separately. Miyawaki notes that this required a concerted effort to develop the necessary instrumentation by his team at RIKEN and a team at the Japan Synchrotron Radiation Research Institute (JASRI).

The experimental results showed stark differences with respect to the symmetries of the in-plane and out-of-plane Fermi surfaces. A detailed analysis revealed that the SS magnetic order is directly linked to electrons ‘inhabiting’ specific regions of the out-of-plane Fermi surface, thus providing direct information about its origin on a microscopic level.

These findings not only provide vital clues to theoretical studies, but also suggest that iron thin films may be used in spintronics devices based on the spin-transfer torque phenomenon, Miyawaki notes. “Because right- and left-handed spin spirals exert a different spin-transfer torque on spin-polarized electrons, iron thin films could serve as memory devices,” he says.

The corresponding author for this highlight is based at the Excitation Order Research Team, RIKEN SPring-8 Center

Journal information

1. Miyawaki, J., Chainani, A., Takata, Y., Mulazzi, M., Oura, M., Senba, Y., Ohashi, H. & Shin, S. Out-of-plane nesting driven spin spiral in ultrathin Fe/Cu(001) films. Physical Review Letters 104, 066407 (2010)

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.rikenresearch.riken.jp/eng/research/6249
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>