Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling the key polyatomic ion of interstellar chemistry

13.01.2012
In the chemistry of interstellar clouds, the three-atomic hydrogen ion plays a key role. In these reactions, also simple organic molecules form.

Although H3+ is the simplest polyatomic molecular ion, its vibrational spectrum at high excitations to date has been neither experimentally precisely known nor theoretically understood. Precise measurements at the Max Planck Institute for Nuclear Physics in Heidelberg now provided the decisive hints on how to dramatically improve the quantum theoretical calculations. (Physical Review Letters 108, 023002 (2012))


Laser spectroscopy of triatomic hydrogen ions is performed at the MPI for Nuclear Physics at temperatures near -210°C in this cryogenic ion trap, a 22-pole cage further developed from the original design by D. Gerlich at the University of Freiburg, Germany. Photo: MPIK, O. Novotný


Two examples of the quantum mechanical wave functions for the atomic nuclei in H3+ at high excitation (corresponding to the 6th and 7th harmonics of the bending vibration in (a) and (b), respectively). They are taken from results of the new calculations (electronic supplement of the paper in Physical Review Letter). The square of this function yields the probability density of locating the atomic nuclei relative to each other. The wave functions show a high probability density for linear configurations of H3+, extremely far away from the equilateral triangular structure of non-vibrating H3+. With the new theory such configurations can be described exactly. Graph: Authors of the paper

Within a molecule, the binding cloud allocates stable positions to the atomic nuclei and determines the frequencies at which they can oscillate around these positions. Ground and overtone frequencies of these vibrations give a fingerprint of the molecular structure and reveal how the electron cloud can resist to deformations of the molecule. The frequencies of very weak high-overtone oscillations must be measured to understand the molecular forces at large deformations. Even for the most basic neutral molecule H2, experiments and quantum calculations needed long time to reach precise agreement; this was reached about three decades ago.

Adding another proton to H2 yields H3+, the simplest polyatomic ion. With just the single additional proton added, challenges rise enormously, both for measuring the weak high-overtone vibration frequencies and for accurately calculating them by quantum theory. Although H3+ is an abundant and chemically very active molecular ion in interstellar space, it can be produced in the laboratory only under extremely dilute conditions, mostly in plasmas. Moreover, in the plasma environment where H3+ ions mostly occur, their temperatures are very high and lead to an essentially impenetrable forest of possible frequencies at which vibrations of these ions can be excited. Finally, only undeformed cold H3+ has a highly symmetrical triangular shape, while all types of asymmetric triangular and even linear shapes occur if it is strongly deformed.

These challenges were successfully met by a recent experiment at a cryogenic buffer gas ion trap at the MPIK, where since some years H3+ ions can be cooled down to only -210 °C for precise laser spectroscopy. In the new experiments, visible light was employed to put the ions into vibration instead of the infrared radiation used earlier, and vibrations up to the eighth overtone – extremely weak resonances – could be excited. After long searches in large intervals around inaccurately predicted transition frequencies, the scientists for the first time could find overtone excitation lines extending far into the visible spectral range.

The new precisely measured overtone frequencies gave decisive hints to an international group of molecular theorists on how to dramatically improve their first-principles quantum calculations of this fundamental triatomic molecule. The new measurements and quantum calculations now for the first time show precise agreement between each other up to strong deformations for a polyatomic molecule, similar to that obtained for the diatomic hydrogen molecule H2 about thirty years ago.

Original publication:
“Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the mid-visible spectral range”
M. Pavanello et al., Physical Review Letters 108, 023002 (2012).
doi: 10.1103/PhysRevLett.108.023002

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://link.aps.org/doi/10.1103/PhysRevLett.108.023002
http://www.mpi-hd.mpg.de/blaum/molecular-qd/index.en.html

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>