Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unusually productive dwarf galaxies pose a riddle, but could solve another

Using the Hubble Space Telescope, a team of astronomers led by Arjen van der Wel of the Max Planck Institute for Astronomy (MPIA) in Heidelberg has looked back into the early universe to discover a population of small, young galaxies that produce new stars at an extraordinary rate.

For current models of galaxy formation, this high star production rate is difficult to explain. It could, however, serve to solve another dwarf galaxy riddle: The unusual distribution of Dark Matter within these cosmic objects. The results will be published in the November 10 edition of the Astrophysical Journal.

One of two regions of the sky in which the CANDELS team found an unusual new type of very distant dwarf galaxy. The region is part of a larger area known as the GOODS-South field, in the constellation Fornax. This false-color image was taken with the two astronomical cameras ACS and WFC3 aboard the Hubble Space Telescope.
Credit: NASA/ESA, A. van der Wel (MPIA), H. Ferguson & A. Koekemoer (STScI), and the CANDELS team

Dwarf galaxies, with masses around one hundredth of the mass of our home galaxy, the Milky Way, are the most common type of galaxy in the cosmos, and their study can reveal important clues about galaxy formation in general.

When it comes to celestial objects, distant dwarf galaxies are rather faint and small, and thus hard to detect. Up until now, very few examples were known, the result of dedicated telescope observations focusing on small patches of the sky. Enter the CANDELS survey, the largest project in the history of the Hubble Space Telescope. Over three years of observations (2010-2013), CANDELS is set to examine the most distant galaxies in the universe.

When it came to dwarf galaxies, the astronomers were in for a surprise: "We found a population of 69 dwarf galaxies that stood out because of their unusual colours" says Arjen van der Wel (MPIA), the lead author of the new study. Due to their great distance, astronomers see these dwarf galaxies as they were nearly 10 billion years ago (redshift z ~ 1.7).

As subsequent studies of the spectra of four of these galaxies confirmed, the unusual colour of these objects is due to the fact that they are producing new stars at a surprisingly high rate – it would take such a galaxy only about 15 million years to double the number of stars; in contrast, it would take our Milky Way galaxy 1000 times as long.

This provides a key piece of the puzzle of galaxy evolution. MPIA director Hans-Walter Rix explains: "Through 'archaeological' studies of nearby dwarf galaxies, carefully tracing stellar ages, astronomers already knew that most of those galaxies' stars formed more than 8 billion years ago. What they didn't know was whether star formation proceeded slowly or quickly." The new results indicate that stars are likely to have formed quickly, with each galaxy undergoing but a few periods of rapid star formation.

While some simulations of dwarf galaxy evolution show episodic bursts of star formation, none of those are intense enough to explain the observed very high formation rate. Thus, the new findings pose a difficult challenge to current models of galactic evolution.

Whereas these dwarf galaxies' high star-formation rate constitutes itself a cosmic riddle, it could help to clear up another, more long-standing mystery concerning the distribution of Dark Matter in galaxies. By mass, Dark Matter accounts for more than 80% of matter in the universe, while ordinary atoms (including the ones we are made of) account for less than 20%. Dark Matter plays a key role in the way that, over the 13.7 or so billion years of cosmic evolution, an initially fairly homogeneous universe condensed to form galaxies and galaxy clusters.

But simulations of galaxy evolution give a result that is at odds with observations: It predicts that dark matter should be concentrated significantly towards the center of a galaxy ("cusp profile"). Observations, on the other hand, have shown a much more even distribution of Dark Matter. As early as 1996, astronomers (Navarro et al.) had surmised that this distribution could have evolved as ordinary matter was blown outwards from the galaxy, pulling some of the Dark Matter along. The newly discovered intense bursts of star-formation activity in dwarf galaxies provide the most direct evidence to date that this is a suitable way of resolving the discrepancy between models and observations.

Contact information

Arjen van der Wel (lead author)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 360
Markus Pössel (public relations)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Background information
The work described here is slated for publication as van der Wel et al., "Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at z > 1" in the November 10, 2011 issue of the Astrophysical Journal.

The co-authors are A. van der Wel (MPIA), A. N. Straughn (Goddard Space Flight Center), H.-W. Rix (MPIA), S. L. Finkelstein (Texas A&M University), A. M. Koekemoer (STScI), B. J. Weiner (Steward Observatory), S. Wuyts (Max Planck Institute for Extraterrestrial Physics), E. F. Bell (University of Michigan), S. M. Faber, J. R. Trump, and D. C. Koo (all USCS), H. C. Ferguson (STScI), C. Scarlata (University of Minnesota), N. P. Hathi (Observatories of the Carnegie Institution of Washington), J. S. Dunlop (University of Edinburgh), J. A. Newman (University of Pittsburgh), M. Dickinson (NOAO), K. Jahnke (MPIA), B. W. Salmon (Texas A&M University), D. F. de Mello(The Catholic University of America and Goddard Space Flight Center), D. D. Kocevski and K. Lai (both UCSC), N. A. Grogin (STScI), S. A. Rodney (Johns Hopkins University), Yicheng Guo (University of Massachusetts), E. G. McGrath (UCSC), K.-S. Lee (Yale Center for Astronomy and Astrophysics), G. Barro (USCS), K.-H. Huang (Johns Hopkins University), A. G. Riess (STScI and Johns Hopkins University), M. L. N. Ashby and S. P. Willner (both Harvard-Smithsonian Center for Astrophysics).

The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is a powerful survey of the distant universe being carried out with the Hubble Space Telescope (HST). The largest project in the history of Hubble, it has been allocated a combined exposure time of 4 months. CANDELS uses to instruments aboard the HST: the near-infrared WFC3 camera and the visible-light ACS camera. Jointly, these two cameras give unprecedented coverage of galaxies from optical wavelengths to the near-infrared. This will allow CANDELS to study different stages in the formation of galaxies, from the first billion years of cosmic evolution to the present. In addition, CANDELS is set to explore the properties of Dark Energy, the little-understood cosmic ingredient responsible for the acceleration of cosmic expansion, by measuring the brightness of supernovae of type Ia – continuing work for which CANDELS team member Adam Riess, who is also a co-author of the present work, was awarded the 2011 Nobel Prize for physics.

Dr. Markus Pössel | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>



Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

More VideoLinks >>>