Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind

13.05.2014

Plasma technology based on Dielectric Barrier Discharge (DBD) has been widely demonstrated to be a novel active flow control method.

In order to make the plasma flow control technology more practical, the plasma authority must be improved at high wind speed. Dr. ZHANG Xin and his group from School of Aeronautic, Northwestern Polytechnical University set out to tackle this problem.


This shows the flow field around the plasma actuator.

Credit: ©Science China Press

After 2-years of innovative research, they have developed a novel plasma actuator to improve the plasma authority at high wind speed. They found that the novel plasma actuator acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the wind speed of 100 m/s.

Their study expanded the plasma actuator authority and demonstrated an important role of plasma actuator in the real application. Their work, entitled "Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed", was published in SCIENCE CHINA Physics, Mechanics & Astronomy. 2014, Vol 57(6).

... more about:
»Astronomy »CAS »Exploration »SCP »UAV »temperature

Plasma flow control technology based on DBD has been widely demonstrated to be a novel active flow control method for boundary layer control, lift augmentation and separation control. Compared with the traditional active flow control, the plasma flow control has simple structure without moving parts and is convenient for real time control due to its fast response.

Many researchers have engaged in the study of plasma flow control. However, in the existing literature, the wind speeds of stall separation control on three-dimensional aerial vehicle using DBD plasma actuator so far were no more than 50 m/s, but the flow speed of real flight is generally above 100 m/s. Therefore, in order to make the plasma flow control technology more practical, the plasma authority must be improved at higher wind speeds.

This work explored the aerodynamic control using novel plasma on a UAV at high wind speeds. The results indicated that the novel plasma actuator was not only jet actuator but also vortex generator, as shown in Figure 1. It can create relatively large-scale disturbances in the separated wake shear layer and promote momentum exchange between low speed and high speed regions which lead to shear layer separation delay.

It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. This study demonstrated an important role of plasma actuator in the real application.

###

This research project was partially supported by the Exploration Foundation of Weapon Systems. It is an important breakthrough in the recent history of the study of plasma flow control. Future research will focus on flight verification testing for the UAV and on the effects of atmospheric parameters, including atmospheric pressure, temperature, and particularly air humidity.

See the article:

Zhang X, Huang Y, Wang W B, et al. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed. SCI CHINA Phys Mech Astron, 2014 Vol. 57 (6): 1160-1168

http://phys.scichina.com:8083/sciGe/EN/abstract/abstract508799.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

http://www.scichina.com/

ZHANG Xin | Eurek Alert!

Further reports about: Astronomy CAS Exploration SCP UAV temperature

More articles from Physics and Astronomy:

nachricht An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye
03.05.2016 | Universität Basel

nachricht Quantum Sensors for High-Precision Magnetometry of Superconductors
03.05.2016 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Viewing a catalytic reaction in action

03.05.2016 | Life Sciences

Mimicking the ingenuity of nature

03.05.2016 | Life Sciences

Quantum Sensors for High-Precision Magnetometry of Superconductors

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>