Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind

13.05.2014

Plasma technology based on Dielectric Barrier Discharge (DBD) has been widely demonstrated to be a novel active flow control method.

In order to make the plasma flow control technology more practical, the plasma authority must be improved at high wind speed. Dr. ZHANG Xin and his group from School of Aeronautic, Northwestern Polytechnical University set out to tackle this problem.


This shows the flow field around the plasma actuator.

Credit: ©Science China Press

After 2-years of innovative research, they have developed a novel plasma actuator to improve the plasma authority at high wind speed. They found that the novel plasma actuator acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the wind speed of 100 m/s.

Their study expanded the plasma actuator authority and demonstrated an important role of plasma actuator in the real application. Their work, entitled "Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed", was published in SCIENCE CHINA Physics, Mechanics & Astronomy. 2014, Vol 57(6).

... more about:
»Astronomy »CAS »Exploration »SCP »UAV »temperature

Plasma flow control technology based on DBD has been widely demonstrated to be a novel active flow control method for boundary layer control, lift augmentation and separation control. Compared with the traditional active flow control, the plasma flow control has simple structure without moving parts and is convenient for real time control due to its fast response.

Many researchers have engaged in the study of plasma flow control. However, in the existing literature, the wind speeds of stall separation control on three-dimensional aerial vehicle using DBD plasma actuator so far were no more than 50 m/s, but the flow speed of real flight is generally above 100 m/s. Therefore, in order to make the plasma flow control technology more practical, the plasma authority must be improved at higher wind speeds.

This work explored the aerodynamic control using novel plasma on a UAV at high wind speeds. The results indicated that the novel plasma actuator was not only jet actuator but also vortex generator, as shown in Figure 1. It can create relatively large-scale disturbances in the separated wake shear layer and promote momentum exchange between low speed and high speed regions which lead to shear layer separation delay.

It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. This study demonstrated an important role of plasma actuator in the real application.

###

This research project was partially supported by the Exploration Foundation of Weapon Systems. It is an important breakthrough in the recent history of the study of plasma flow control. Future research will focus on flight verification testing for the UAV and on the effects of atmospheric parameters, including atmospheric pressure, temperature, and particularly air humidity.

See the article:

Zhang X, Huang Y, Wang W B, et al. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed. SCI CHINA Phys Mech Astron, 2014 Vol. 57 (6): 1160-1168

http://phys.scichina.com:8083/sciGe/EN/abstract/abstract508799.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

http://www.scichina.com/

ZHANG Xin | Eurek Alert!

Further reports about: Astronomy CAS Exploration SCP UAV temperature

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>