Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto physicists lay the groundwork for cooler, faster computing

16.12.2009
University of Toronto quantum optics researchers Sajeev John and Xun Ma have discovered new behaviours of light within photonic crystals that could lead to faster optical information processing and compact computers that don't overheat.

"We discovered that by sculpting a unique artificial vacuum inside a photonic crystal, we can completely control the electronic state of artificial atoms within the vacuum," says Ma, a PhD student under John's supervision and lead author of a study published in a recent issue of Physical Review Letters.

"This discovery can enable photonic computers that are more than a hundred times faster than their electronic counterparts, without heat dissipation issues and other bottlenecks currently faced by electronic computing."

"We designed a vacuum in which light passes through circuit paths that are one one-hundredth of the thickness of a human hair, and whose character changes drastically and abruptly with the wavelength of the light," says John. "A vacuum experienced by light is not completely empty, and can be made even emptier. It's not the traditional understanding of a vacuum."

"In this vacuum, the state of each atom – or quantum dot – can be manipulated with color-coded streams of laser pulses that sequentially excite and de-excite it in trillionths of a second. These quantum dots can in turn control other streams of optical pulses, enabling optical information processing and computing," says Ma.

The original aim of the investigation was to gain a deeper understanding of optical switching, part of an effort to develop an all-optical micro-transistor that could operate within a photonic chip. This led to the discovery of a new and unexpected dynamic switching mechanism, imposed by the artificial vacuum in a photonic crystal. The research also led to the discovery of corrections to one of the most fundamental equations of quantum optics known as the Bloch equation.

"This new mechanism enables micrometer scale integrated all-optical transistors to perform logic operations over multiple frequency channels in trillionths of a second at microwatt power levels, which are about one millionth of the power required by a household light bulb," says John. "That this mechanism allows for computing over many wavelengths as opposed to electronic circuits which use only one channel, would significantly surpass the performance of current day electronic transistors."

The results appear in a paper titled "Ultrafast Population Switching of Quantum Dots in a Structured Vacuum", published online in the Physical Review Letters on December 3. The research was funded with support from the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, and the Ontario Premier's Platinum Research Fund.

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>