Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto physicists lay the groundwork for cooler, faster computing

16.12.2009
University of Toronto quantum optics researchers Sajeev John and Xun Ma have discovered new behaviours of light within photonic crystals that could lead to faster optical information processing and compact computers that don't overheat.

"We discovered that by sculpting a unique artificial vacuum inside a photonic crystal, we can completely control the electronic state of artificial atoms within the vacuum," says Ma, a PhD student under John's supervision and lead author of a study published in a recent issue of Physical Review Letters.

"This discovery can enable photonic computers that are more than a hundred times faster than their electronic counterparts, without heat dissipation issues and other bottlenecks currently faced by electronic computing."

"We designed a vacuum in which light passes through circuit paths that are one one-hundredth of the thickness of a human hair, and whose character changes drastically and abruptly with the wavelength of the light," says John. "A vacuum experienced by light is not completely empty, and can be made even emptier. It's not the traditional understanding of a vacuum."

"In this vacuum, the state of each atom – or quantum dot – can be manipulated with color-coded streams of laser pulses that sequentially excite and de-excite it in trillionths of a second. These quantum dots can in turn control other streams of optical pulses, enabling optical information processing and computing," says Ma.

The original aim of the investigation was to gain a deeper understanding of optical switching, part of an effort to develop an all-optical micro-transistor that could operate within a photonic chip. This led to the discovery of a new and unexpected dynamic switching mechanism, imposed by the artificial vacuum in a photonic crystal. The research also led to the discovery of corrections to one of the most fundamental equations of quantum optics known as the Bloch equation.

"This new mechanism enables micrometer scale integrated all-optical transistors to perform logic operations over multiple frequency channels in trillionths of a second at microwatt power levels, which are about one millionth of the power required by a household light bulb," says John. "That this mechanism allows for computing over many wavelengths as opposed to electronic circuits which use only one channel, would significantly surpass the performance of current day electronic transistors."

The results appear in a paper titled "Ultrafast Population Switching of Quantum Dots in a Structured Vacuum", published online in the Physical Review Letters on December 3. The research was funded with support from the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, and the Ontario Premier's Platinum Research Fund.

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>