Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto astronomer part of team that finds new way to study supernovae

09.07.2009
An international team of astronomers has found a better way to examine the origins and evolution of galaxies that form following supernova explosions – the starting point for the formation of galaxies when a star explodes – and they have discovered new supernovae in the process.

“We’ve devised a technique to discover supernova explosions at greater distances than previously known,” says team member Ray Carlberg of U of T’s Department of Astronomy and Astrophysics. “The most distant one occurred during the time when galaxies were at their peak phase of star formation activity, approximately 10 billion years ago, twice the age of Earth.”

The ultra-distant supernovae were discovered in images acquired as part of the Canada-France-Hawaii Telescope Legacy Survey. “Our trick was to add together six months of images to create a very deep image of the sky,” says Carlberg. “This allows us to look for objects that changed in brightness over a long period of time,” says Carlberg of their ability to measure the changing intensity of light emitted by cosmic debris following a supernova explosion.

“The specific type of supernovae we discovered have bright light emission lines even after the original explosion has faded away, “says Carlberg. “This emission is a result of the supernova explosion colliding with unusually dense gas around the exploding star. Future studies of the line intensities will reveal the ongoing development of the explosion and give information about the chemical composition of the gas at this early time.”

The discovery opens a new avenue to study the details of how galaxies and their components evolve with time. “During a supernova explosion, virtually all of the elements heavier than oxygen – calcium, silicon, iron, all the way to up uranium – are produced,” says Carlberg. “These metals, along with the tremendous blast of energy they release into the surrounding gas, make supernovae of great interest for studying the build up of the galaxy and its component stars, and even the rocky planets like our own.”

A report on the discovery appears in the July 9 issue of Nature. In addition to Carlberg, a fellow of the Canadian Institute for Advanced Research, contributors to the study included Jeff Cooke, Elizabeth J. Barton, James S. Bullock and Erik Tollerud of the University of California, Irvine, Mark Sullivan of the University of Oxford, and Avishay Gal-Yam Weizmann Institute of Science in Israel. Funding was provided by the Gary McCue Postdoctoral Fellowship and the Centre for Cosmology at the University of California, Irvine, the Natural Sciences and Engineering Research Council of Canada, and the Royal Society.

MEDIA CONTACTS:

Ray Carlberg
Department of Astronomy & Astrophysics
University of Toronto
carlberg@astro.utoronto.ca
416-978-2198
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Ray Carlberg | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>