Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto astronomer part of team that finds new way to study supernovae

09.07.2009
An international team of astronomers has found a better way to examine the origins and evolution of galaxies that form following supernova explosions – the starting point for the formation of galaxies when a star explodes – and they have discovered new supernovae in the process.

“We’ve devised a technique to discover supernova explosions at greater distances than previously known,” says team member Ray Carlberg of U of T’s Department of Astronomy and Astrophysics. “The most distant one occurred during the time when galaxies were at their peak phase of star formation activity, approximately 10 billion years ago, twice the age of Earth.”

The ultra-distant supernovae were discovered in images acquired as part of the Canada-France-Hawaii Telescope Legacy Survey. “Our trick was to add together six months of images to create a very deep image of the sky,” says Carlberg. “This allows us to look for objects that changed in brightness over a long period of time,” says Carlberg of their ability to measure the changing intensity of light emitted by cosmic debris following a supernova explosion.

“The specific type of supernovae we discovered have bright light emission lines even after the original explosion has faded away, “says Carlberg. “This emission is a result of the supernova explosion colliding with unusually dense gas around the exploding star. Future studies of the line intensities will reveal the ongoing development of the explosion and give information about the chemical composition of the gas at this early time.”

The discovery opens a new avenue to study the details of how galaxies and their components evolve with time. “During a supernova explosion, virtually all of the elements heavier than oxygen – calcium, silicon, iron, all the way to up uranium – are produced,” says Carlberg. “These metals, along with the tremendous blast of energy they release into the surrounding gas, make supernovae of great interest for studying the build up of the galaxy and its component stars, and even the rocky planets like our own.”

A report on the discovery appears in the July 9 issue of Nature. In addition to Carlberg, a fellow of the Canadian Institute for Advanced Research, contributors to the study included Jeff Cooke, Elizabeth J. Barton, James S. Bullock and Erik Tollerud of the University of California, Irvine, Mark Sullivan of the University of Oxford, and Avishay Gal-Yam Weizmann Institute of Science in Israel. Funding was provided by the Gary McCue Postdoctoral Fellowship and the Centre for Cosmology at the University of California, Irvine, the Natural Sciences and Engineering Research Council of Canada, and the Royal Society.

MEDIA CONTACTS:

Ray Carlberg
Department of Astronomy & Astrophysics
University of Toronto
carlberg@astro.utoronto.ca
416-978-2198
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Ray Carlberg | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>