Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two University of Tennessee Scientists to Begin Searching for Potential Habitats for Life on Mars

07.08.2012
NASA's Curiosity rover is scheduled to land on Mars Sunday. Then, the work will begin for two University of Tennessee, Knoxville, professors searching for potentially habitable environments on the red planet.

Linda Kah and Jeffrey Moersch, associate professors in the Department of Earth and Planetary Sciences, are an integral part of the NASA team working on the rover.

The Curiosity rover is looking for clues to whether the Martian surface has ever had an environment capable of evolving, or potentially sustaining life. Critical evidence may include liquid or frozen water, organic compounds or other chemical ingredients related to life.

To view a video about the mission, visit http://bit.ly/PLy1eO.

Kah, Moersch and the rest of the science team will soon begin selecting targets for the rover and helping choose which instruments will be used to examine Martian soils and sedimentary rocks.

"In particular, we will be examining sedimentary rocks that form Mount Sharp, which is a more than five-kilometer-high mountain within Gale Crater, the area the rover is exploring," said Kah. "These rocks might serve as a time capsule of Mars' transition from a warm, wet planet to a cold, dry one."

Kah is part of a camera team that is searching for features within rocks that might provide clues to the role of fluids in the planet's past. When combined with chemical measurements, these observations can help determine how life might have exploited surface environments.

"We like to pretend that the rover is like a field geologist with an analytical laboratory on her back," said Kah. "Curiosity has a lot more capabilities than earlier rovers. The cameras and my scientific team act as the rover's eyes and ears."

Working from Pasadena, Calif., the team will guide the rover to collect soil material and powdered rock samples using its robotic arm to gather, filter and transfer them into the rover's analytical system. Kah and other scientists will then use an instrument capable of detecting both organic molecules and the isotopic signatures often left in rocks by microbial metabolisms.

"Twice a day, data will be downlinked to specialists who will put it into a format that will be most accessible to the rest of the scientists," said Kah. "Five teams will look at the data and use their expertise to decide the next targets and the most pertinent questions."

Moersch is searching for hydrogen—another ingredient important for life—in the form of water, ice or hydrated minerals.

"Hydrogen is an interesting element because, geologically, it is only likely to be found in water and in hydrated minerals, such as gypsum or clays," said Moersch. "Those types of minerals tell us about the history of the environment in that location and whether or not there was liquid water there, making it more hospitable for life."

Moersch and the team will use the rover's neutron detector—the same technology oil companies use to sniff out hydrocarbons in drill holes—to search for hydrogen-bearing materials and other geochemical anomalies in the Martian surface.

"If the neutron detector turns up something that is potentially interesting in a given location, we may choose to spend some additional time to investigate that location with the rover's other instruments, including sampling the subsurface with a small drill," said Moersch.

The process is painstakingly slow. The rover likely will cover only about 200 meters on a good day, and the mission will not conclude until at least 2014. Still the scientists are certain their hard work will pay off.

"I expect that we will find evidence for the building blocks of life, although that is a far cry from actually finding evidence for life," said Kah. "Personally, I am more excited by the opportunity to ask a whole set of higher-order questions about what the Martian surface was like and how it might have changed through time."

The rocket launched from the Kennedy Space Center on Nov. 26.

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu
http://www.youtube.com/watch?v=XaUh7CO4Hdc&feature=youtu.be

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>