Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Oxford signs RFEL for initial signal processing study contract for ...

18.02.2014

... the Square Kilometre Array radio astronomy project

The University of Oxford, a member of the Low Frequency Aperture Array (LFAA) consortium, working together with the Square Kilometre Array (SKA) Organisation to build the world's largest radio telescope, has signed an initial study contract with RFEL. The contract covers the design of an FPGA-based signal processing architecture for the channelisation and beam forming functions in the antenna processing hardware.


Artist's composition of the 4 SKA instruments spread on the African (right of the image) and Australian (left of the image) continent.
Photo credit: SKA Organisation

Image downloadable from
https://www.skatelescope.org/wp-content/uploads/2013/12/SKAall_night1.full.jpg

RFEL, who specialises in high performance, electronic video and signal processing solutions, was selected because of the company's expertise in novel signal processing architectures and optimal VHDL coding that allows complex designs to "fit" into small FPGAs without compromising overall system performance. The SKA, which will be built over the next decade, will comprise of thousands of dish telescopes and hundreds of thousands of dipole antennas. Each of the dipole antennas will have two of these channelisers, to process the signals. It is therefore vital to keep the power requirements and costs of each processing card to a minimum.

The study involves the creation of a highly-configurable, fixed-point Matlab model, where channelisation parameters and beam forming strategies can be entered. Stimulus can then be presented to the model to allow the fidelity of performance to be monitored against immediate feedback of FPGA resource usage, and power dissipation for any given design configuration. RFEL is drawing on its years of work in this area of signal processing and its extensive Matlab and VHDL "module" library, to enable the SKA to achieve the maximum system performance matched to the FPGA cost and power dissipation limitations of such a large scientific instrument.

Alex Kuhrt, RFEL's CEO, announced, "We are delighted to have been awarded this contract. This is a highly prestigious, international project with around 100 organisations from 20 countries participating in the design and development. We will be able to draw on our previous work on solutions for radio telescopes, such as for the Max Planck Institute for Radio Astronomy."

The antennae will be located in Australia and Africa to form a radio telescope that spans two continents and a total collecting area of one square kilometre. Rather than just clustered in the central core regions, the telescopes will be arranged in multiple spiral arm configurations, with the antennae extending to vast distances from the central cores, creating what is known as a long baseline interferometer array. It will have an unprecedented scope in observations, exceeding the image resolution quality of the Hubble Space Telescope by a factor of 50 times, whilst also having the ability to image huge areas of sky ten times faster than any existing facilities.

The SKA will address fundamental unanswered questions about the Universe including how the first stars and galaxies formed after the big bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth.

Artist's composition of the 4 SKA instruments spread on the African (right of the image) and Australian (left of the image) continent. 

Photo credit: SKA Organisation

Image downloadable from
https://www.skatelescope.org/wp-content/uploads/2013/12/SKAall_night1.full.jpg

In such an array, physical distance separates the telescopes, and the distance between them is calculated precisely using the time difference between the arrival of radio signals at each receiver. Computers can then calculate how to combine these signals to synthesise something the equivalent size of a single dish measuring the width of the distance between the two scopes. In doing so, these interferometry techniques enable astronomers to emulate a telescope with a size equal to the maximum separation between the telescopes in the array, or if needed, just the distance between a subset of telescopes, or indeed, multiple subsets of the main array. This way, rather than build one gigantic dish, the capabilities of one huge dish are in some ways surpassed by the flexibility that this interferometry configuration brings.

SKA

The SKA project is an international effort to build the world's largest radio telescope, with a square kilometre (one million square metres) of collecting area. The scale of the SKA represents a huge leap forward in both engineering and research & development towards building and delivering a radio telescope, and will deliver a correspondingly transformational increase in science capability when operational. The SKA Organisation, with its headquarters at Jodrell Bank Observatory near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and to centralise the leadership of the project. Eleven countries are currently members of the SKA Organisation, and some further countries expressed their interest in joining the project in the near-term future.

Contact information: William Garnier, Communications and Outreach Manager, SKA Organisation.

Email: w.garnier@skatelescope.org Phone: +44 (0) 161 306 9613 www.skatelescope.org

RFEL
RFEL Ltd is a UK-based innovative electronic systems designer, providing real-time high specification signal, image and video processing products, FPGA solutions and design services to defence, security, communications and instrumentation markets.


Further Information and illustrations
RFEL Ltd
E info@rfel.com
T +44 (0) 1983 216600
Press Information
Nigel Robson, Vortex PR
E nigel@vortexpr.com
T +44 (0) 1481 233080
www.vortexpr.com

All trademarks are the property of their respective owners

Nigel Robson | Vortex PR
Further information:
http://www.rfel.com

Further reports about: Max Planck Institute RFEL SKA radio signal radio telescope signal processing

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>