Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Oxford signs RFEL for initial signal processing study contract for ...

18.02.2014

... the Square Kilometre Array radio astronomy project

The University of Oxford, a member of the Low Frequency Aperture Array (LFAA) consortium, working together with the Square Kilometre Array (SKA) Organisation to build the world's largest radio telescope, has signed an initial study contract with RFEL. The contract covers the design of an FPGA-based signal processing architecture for the channelisation and beam forming functions in the antenna processing hardware.


Artist's composition of the 4 SKA instruments spread on the African (right of the image) and Australian (left of the image) continent.
Photo credit: SKA Organisation

Image downloadable from
https://www.skatelescope.org/wp-content/uploads/2013/12/SKAall_night1.full.jpg

RFEL, who specialises in high performance, electronic video and signal processing solutions, was selected because of the company's expertise in novel signal processing architectures and optimal VHDL coding that allows complex designs to "fit" into small FPGAs without compromising overall system performance. The SKA, which will be built over the next decade, will comprise of thousands of dish telescopes and hundreds of thousands of dipole antennas. Each of the dipole antennas will have two of these channelisers, to process the signals. It is therefore vital to keep the power requirements and costs of each processing card to a minimum.

The study involves the creation of a highly-configurable, fixed-point Matlab model, where channelisation parameters and beam forming strategies can be entered. Stimulus can then be presented to the model to allow the fidelity of performance to be monitored against immediate feedback of FPGA resource usage, and power dissipation for any given design configuration. RFEL is drawing on its years of work in this area of signal processing and its extensive Matlab and VHDL "module" library, to enable the SKA to achieve the maximum system performance matched to the FPGA cost and power dissipation limitations of such a large scientific instrument.

Alex Kuhrt, RFEL's CEO, announced, "We are delighted to have been awarded this contract. This is a highly prestigious, international project with around 100 organisations from 20 countries participating in the design and development. We will be able to draw on our previous work on solutions for radio telescopes, such as for the Max Planck Institute for Radio Astronomy."

The antennae will be located in Australia and Africa to form a radio telescope that spans two continents and a total collecting area of one square kilometre. Rather than just clustered in the central core regions, the telescopes will be arranged in multiple spiral arm configurations, with the antennae extending to vast distances from the central cores, creating what is known as a long baseline interferometer array. It will have an unprecedented scope in observations, exceeding the image resolution quality of the Hubble Space Telescope by a factor of 50 times, whilst also having the ability to image huge areas of sky ten times faster than any existing facilities.

The SKA will address fundamental unanswered questions about the Universe including how the first stars and galaxies formed after the big bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth.

Artist's composition of the 4 SKA instruments spread on the African (right of the image) and Australian (left of the image) continent. 

Photo credit: SKA Organisation

Image downloadable from
https://www.skatelescope.org/wp-content/uploads/2013/12/SKAall_night1.full.jpg

In such an array, physical distance separates the telescopes, and the distance between them is calculated precisely using the time difference between the arrival of radio signals at each receiver. Computers can then calculate how to combine these signals to synthesise something the equivalent size of a single dish measuring the width of the distance between the two scopes. In doing so, these interferometry techniques enable astronomers to emulate a telescope with a size equal to the maximum separation between the telescopes in the array, or if needed, just the distance between a subset of telescopes, or indeed, multiple subsets of the main array. This way, rather than build one gigantic dish, the capabilities of one huge dish are in some ways surpassed by the flexibility that this interferometry configuration brings.

SKA

The SKA project is an international effort to build the world's largest radio telescope, with a square kilometre (one million square metres) of collecting area. The scale of the SKA represents a huge leap forward in both engineering and research & development towards building and delivering a radio telescope, and will deliver a correspondingly transformational increase in science capability when operational. The SKA Organisation, with its headquarters at Jodrell Bank Observatory near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and to centralise the leadership of the project. Eleven countries are currently members of the SKA Organisation, and some further countries expressed their interest in joining the project in the near-term future.

Contact information: William Garnier, Communications and Outreach Manager, SKA Organisation.

Email: w.garnier@skatelescope.org Phone: +44 (0) 161 306 9613 www.skatelescope.org

RFEL
RFEL Ltd is a UK-based innovative electronic systems designer, providing real-time high specification signal, image and video processing products, FPGA solutions and design services to defence, security, communications and instrumentation markets.


Further Information and illustrations
RFEL Ltd
E info@rfel.com
T +44 (0) 1983 216600
Press Information
Nigel Robson, Vortex PR
E nigel@vortexpr.com
T +44 (0) 1481 233080
www.vortexpr.com

All trademarks are the property of their respective owners

Nigel Robson | Vortex PR
Further information:
http://www.rfel.com

Further reports about: Max Planck Institute RFEL SKA radio signal radio telescope signal processing

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>