Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Oxford signs RFEL for initial signal processing study contract for ...

18.02.2014

... the Square Kilometre Array radio astronomy project

The University of Oxford, a member of the Low Frequency Aperture Array (LFAA) consortium, working together with the Square Kilometre Array (SKA) Organisation to build the world's largest radio telescope, has signed an initial study contract with RFEL. The contract covers the design of an FPGA-based signal processing architecture for the channelisation and beam forming functions in the antenna processing hardware.


Artist's composition of the 4 SKA instruments spread on the African (right of the image) and Australian (left of the image) continent.
Photo credit: SKA Organisation

Image downloadable from
https://www.skatelescope.org/wp-content/uploads/2013/12/SKAall_night1.full.jpg

RFEL, who specialises in high performance, electronic video and signal processing solutions, was selected because of the company's expertise in novel signal processing architectures and optimal VHDL coding that allows complex designs to "fit" into small FPGAs without compromising overall system performance. The SKA, which will be built over the next decade, will comprise of thousands of dish telescopes and hundreds of thousands of dipole antennas. Each of the dipole antennas will have two of these channelisers, to process the signals. It is therefore vital to keep the power requirements and costs of each processing card to a minimum.

The study involves the creation of a highly-configurable, fixed-point Matlab model, where channelisation parameters and beam forming strategies can be entered. Stimulus can then be presented to the model to allow the fidelity of performance to be monitored against immediate feedback of FPGA resource usage, and power dissipation for any given design configuration. RFEL is drawing on its years of work in this area of signal processing and its extensive Matlab and VHDL "module" library, to enable the SKA to achieve the maximum system performance matched to the FPGA cost and power dissipation limitations of such a large scientific instrument.

Alex Kuhrt, RFEL's CEO, announced, "We are delighted to have been awarded this contract. This is a highly prestigious, international project with around 100 organisations from 20 countries participating in the design and development. We will be able to draw on our previous work on solutions for radio telescopes, such as for the Max Planck Institute for Radio Astronomy."

The antennae will be located in Australia and Africa to form a radio telescope that spans two continents and a total collecting area of one square kilometre. Rather than just clustered in the central core regions, the telescopes will be arranged in multiple spiral arm configurations, with the antennae extending to vast distances from the central cores, creating what is known as a long baseline interferometer array. It will have an unprecedented scope in observations, exceeding the image resolution quality of the Hubble Space Telescope by a factor of 50 times, whilst also having the ability to image huge areas of sky ten times faster than any existing facilities.

The SKA will address fundamental unanswered questions about the Universe including how the first stars and galaxies formed after the big bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth.

Artist's composition of the 4 SKA instruments spread on the African (right of the image) and Australian (left of the image) continent. 

Photo credit: SKA Organisation

Image downloadable from
https://www.skatelescope.org/wp-content/uploads/2013/12/SKAall_night1.full.jpg

In such an array, physical distance separates the telescopes, and the distance between them is calculated precisely using the time difference between the arrival of radio signals at each receiver. Computers can then calculate how to combine these signals to synthesise something the equivalent size of a single dish measuring the width of the distance between the two scopes. In doing so, these interferometry techniques enable astronomers to emulate a telescope with a size equal to the maximum separation between the telescopes in the array, or if needed, just the distance between a subset of telescopes, or indeed, multiple subsets of the main array. This way, rather than build one gigantic dish, the capabilities of one huge dish are in some ways surpassed by the flexibility that this interferometry configuration brings.

SKA

The SKA project is an international effort to build the world's largest radio telescope, with a square kilometre (one million square metres) of collecting area. The scale of the SKA represents a huge leap forward in both engineering and research & development towards building and delivering a radio telescope, and will deliver a correspondingly transformational increase in science capability when operational. The SKA Organisation, with its headquarters at Jodrell Bank Observatory near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and to centralise the leadership of the project. Eleven countries are currently members of the SKA Organisation, and some further countries expressed their interest in joining the project in the near-term future.

Contact information: William Garnier, Communications and Outreach Manager, SKA Organisation.

Email: w.garnier@skatelescope.org Phone: +44 (0) 161 306 9613 www.skatelescope.org

RFEL
RFEL Ltd is a UK-based innovative electronic systems designer, providing real-time high specification signal, image and video processing products, FPGA solutions and design services to defence, security, communications and instrumentation markets.


Further Information and illustrations
RFEL Ltd
E info@rfel.com
T +44 (0) 1983 216600
Press Information
Nigel Robson, Vortex PR
E nigel@vortexpr.com
T +44 (0) 1481 233080
www.vortexpr.com

All trademarks are the property of their respective owners

Nigel Robson | Vortex PR
Further information:
http://www.rfel.com

Further reports about: Max Planck Institute RFEL SKA radio signal radio telescope signal processing

More articles from Physics and Astronomy:

nachricht Winds a quarter the speed of light spotted leaving mysterious binary systems
29.04.2016 | University of Cambridge

nachricht Possible Extragalactic Source of High-Energy Neutrinos
28.04.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>