Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Oxford signs RFEL for initial signal processing study contract for ...

18.02.2014

... the Square Kilometre Array radio astronomy project

The University of Oxford, a member of the Low Frequency Aperture Array (LFAA) consortium, working together with the Square Kilometre Array (SKA) Organisation to build the world's largest radio telescope, has signed an initial study contract with RFEL. The contract covers the design of an FPGA-based signal processing architecture for the channelisation and beam forming functions in the antenna processing hardware.


Artist's composition of the 4 SKA instruments spread on the African (right of the image) and Australian (left of the image) continent.
Photo credit: SKA Organisation

Image downloadable from
https://www.skatelescope.org/wp-content/uploads/2013/12/SKAall_night1.full.jpg

RFEL, who specialises in high performance, electronic video and signal processing solutions, was selected because of the company's expertise in novel signal processing architectures and optimal VHDL coding that allows complex designs to "fit" into small FPGAs without compromising overall system performance. The SKA, which will be built over the next decade, will comprise of thousands of dish telescopes and hundreds of thousands of dipole antennas. Each of the dipole antennas will have two of these channelisers, to process the signals. It is therefore vital to keep the power requirements and costs of each processing card to a minimum.

The study involves the creation of a highly-configurable, fixed-point Matlab model, where channelisation parameters and beam forming strategies can be entered. Stimulus can then be presented to the model to allow the fidelity of performance to be monitored against immediate feedback of FPGA resource usage, and power dissipation for any given design configuration. RFEL is drawing on its years of work in this area of signal processing and its extensive Matlab and VHDL "module" library, to enable the SKA to achieve the maximum system performance matched to the FPGA cost and power dissipation limitations of such a large scientific instrument.

Alex Kuhrt, RFEL's CEO, announced, "We are delighted to have been awarded this contract. This is a highly prestigious, international project with around 100 organisations from 20 countries participating in the design and development. We will be able to draw on our previous work on solutions for radio telescopes, such as for the Max Planck Institute for Radio Astronomy."

The antennae will be located in Australia and Africa to form a radio telescope that spans two continents and a total collecting area of one square kilometre. Rather than just clustered in the central core regions, the telescopes will be arranged in multiple spiral arm configurations, with the antennae extending to vast distances from the central cores, creating what is known as a long baseline interferometer array. It will have an unprecedented scope in observations, exceeding the image resolution quality of the Hubble Space Telescope by a factor of 50 times, whilst also having the ability to image huge areas of sky ten times faster than any existing facilities.

The SKA will address fundamental unanswered questions about the Universe including how the first stars and galaxies formed after the big bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth.

Artist's composition of the 4 SKA instruments spread on the African (right of the image) and Australian (left of the image) continent. 

Photo credit: SKA Organisation

Image downloadable from
https://www.skatelescope.org/wp-content/uploads/2013/12/SKAall_night1.full.jpg

In such an array, physical distance separates the telescopes, and the distance between them is calculated precisely using the time difference between the arrival of radio signals at each receiver. Computers can then calculate how to combine these signals to synthesise something the equivalent size of a single dish measuring the width of the distance between the two scopes. In doing so, these interferometry techniques enable astronomers to emulate a telescope with a size equal to the maximum separation between the telescopes in the array, or if needed, just the distance between a subset of telescopes, or indeed, multiple subsets of the main array. This way, rather than build one gigantic dish, the capabilities of one huge dish are in some ways surpassed by the flexibility that this interferometry configuration brings.

SKA

The SKA project is an international effort to build the world's largest radio telescope, with a square kilometre (one million square metres) of collecting area. The scale of the SKA represents a huge leap forward in both engineering and research & development towards building and delivering a radio telescope, and will deliver a correspondingly transformational increase in science capability when operational. The SKA Organisation, with its headquarters at Jodrell Bank Observatory near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and to centralise the leadership of the project. Eleven countries are currently members of the SKA Organisation, and some further countries expressed their interest in joining the project in the near-term future.

Contact information: William Garnier, Communications and Outreach Manager, SKA Organisation.

Email: w.garnier@skatelescope.org Phone: +44 (0) 161 306 9613 www.skatelescope.org

RFEL
RFEL Ltd is a UK-based innovative electronic systems designer, providing real-time high specification signal, image and video processing products, FPGA solutions and design services to defence, security, communications and instrumentation markets.


Further Information and illustrations
RFEL Ltd
E info@rfel.com
T +44 (0) 1983 216600
Press Information
Nigel Robson, Vortex PR
E nigel@vortexpr.com
T +44 (0) 1481 233080
www.vortexpr.com

All trademarks are the property of their respective owners

Nigel Robson | Vortex PR
Further information:
http://www.rfel.com

Further reports about: Max Planck Institute RFEL SKA radio signal radio telescope signal processing

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>