Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Oklahoma Astronomer and Colleagues Identify 12 Billion-Year-Old White Dwarf Stars Only 100 Light Years Away

12.04.2012
A University of Oklahoma assistant professor and colleagues have identified two white dwarf stars considered the oldest and closest known to man. Astronomers identified these 11- to 12-billion-year-old white dwarf stars only 100 light years away from Earth. These stars are the closest known examples of the oldest stars in the Universe forming soon after the Big Bang, according to the OU researcher.
Mukremin Kilic, assistant professor of physics and astronomy in the OU College of Arts and Sciences and lead author on a recently published paper, announced the discovery. Kilic says, “A white dwarf is like a hot stove; once the stove is off, it cools slowly over time. By measuring how cool the stove is, we can tell how long it has been off. The two stars we identified have been cooling for billions of years.”

Kilic explains that white dwarf stars are the burned out cores of stars similar to the Sun. In about 5 billion years, the Sun also will burn out and turn into a white dwarf star. It will lose its outer layers as it dies and turn into an incredibly dense star the size of Earth.

Known as WD 0346+246 and SDSS J110217, 48+411315.4 (J1102), these stars are located in the constellations Taurus and Ursa Major, respectively. Kilic and colleagues obtained infrared images using NASA’s Spitzer Space Telescope to measure the temperature of the stars. And, over a three-year period, they measured J1102’s distance by tracking its motion using the MDM Observatory’s 2.4m telescope near Tucson, Arizona.

“Most stars stay almost perfectly fixed in the sky, but J1102 is moving at a speed of 600,000 miles per hour and is a little more than 100 light years from Earth,” remarks co-author John Thorstensen of Dartmouth College. “We found its distance by measuring a tiny wiggle in its path caused by the Earth’s motion—it’s the size of a dime viewed from 80 miles away.”

“Based on the optical and infrared observations of these stars and our analysis, these stars are about 3700 and 3800 degrees on the surface,” said co-author Piotr Kowalski of Helmholtz Centre Potsdam in Germany. Kowalski modeled the atmospheric parameters of these stars. Based on these temperature measurements, Kilic and his colleagues were able to estimate the ages of the stars.

“It is like a crime scene investigation,” added Kilic. “We measure the temperature of the dead body—in our case a dead star, then determine the time of the crime. These two white dwarf stars have been dead and cooling off almost for the entire history of the Universe.”

Kilic was the lead author on the paper accepted for publication in the Monthly Notices of the Royal Astronomical Society. Kilic’s co-authors include John Thorstensen, Dartmouth College; Piotr Kowalski, Helmholtz Centre Potsdam, Germany; and Jeff Andrews, Columbia University. For more information about Kilic and his research, visit his website at http://www.nhn.ou.edu/~kilic/.
Contact: Jana Smith, Director of
Strategic Communications for R&D
University of Oklahoma
405-325-1322; jana.smith@ou.edu

Jana Smith | EurekAlert!
Further information:
http://www.nhn.ou.edu/~kilic/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>