Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto physicists harness neglected properties of light

16.02.2017

Technique could help increase resolution of microscopes and telescopes

University of Toronto (U of T) researchers have demonstrated a way to increase the resolution of microscopes and telescopes beyond long-accepted limitations by tapping into previously neglected properties of light. The method allows observers to distinguish very small or distant objects that are so close together they normally meld into a single blur.


University of Toronto physics researchers Edwin (Weng Kian) Tham and Hugo Ferretti prepare to run a test in their quest to beat Rayleigh's Curse, by tapping into previously neglected properties of light.

Credit: Diana Tyszko/University of Toronto

Telescopes and microscopes are great for observing lone subjects. Scientists can precisely detect and measure a single distant star. The longer they observe, the more refined their data becomes.

But objects like binary stars don't work the same way.

... more about:
»QUANTUM »Telescopes »waves

That's because even the best telescopes are subject to laws of physics that cause light to spread out or "diffract." A sharp pinpoint becomes an ever-so-slightly blurry dot. If two stars are so close together that their blurs overlap, no amount of observation can separate them out. Their individual information is irrevocably lost.

More than 100 years ago, British physicist John William Strutt - better known as Lord Rayleigh - established the minimum distance between objects necessary for a telescope to pick out each individually. The "Rayleigh Criterion" has stood as an inherent limitation of the field of optics ever since.

Telescopes, though, only register light's "intensity" or brightness. Light has other properties that now appear to allow one to circumvent the Rayleigh Criterion.

"To beat Rayleigh's curse, you have to do something clever," says Professor Aephraim Steinberg, a physicist at U of T's Centre for Quantum Information and Quantum Control, and Senior Fellow in the Quantum Information Science program at the Canadian Institute for Advanced Research. He's the lead author of a paper published today in the journal Physical Review Letters.

Some of these clever ideas were recognized with the 2014 Nobel Prize in Chemistry, notes Steinberg, but those methods all still rely on intensity only, limiting the situations in which they can be applied. "We measured another property of light called 'phase.' And phase gives you just as much information about sources that are very close together as it does those with large separations."

Light travels in waves, and all waves have a phase. Phase refers to the location of a wave's crests and troughs. Even when a pair of close-together light sources blurs into a single blob, information about their individual wave phases remains intact. You just have to know how to look for it. This realization was published by National University of Singapore researchers Mankei Tsang, Ranjith Nair, and Xiao-Ming Lu last year in Physical Review X, and Steinberg's and three other experimental groups immediately set about devising a variety of ways to put it into practice.

"We tried to come up with the simplest thing you could possibly do," Steinberg says. "To play with the phase, you have to slow a wave down, and light is actually easy to slow down."

His team, including PhD students Edwin (Weng Kian) Tham and Huge Ferretti, split test images in half. Light from each half passes through glass of a different thickness, which slows the waves for different amounts of time, changing their respective phases. When the beams recombine, they create distinct interference patterns that tell the researchers whether the original image contained one object or two - at resolutions well beyond the Rayleigh Criterion.

So far, Steinberg's team has tested the method only in artificial situations involving highly restrictive parameters.

"I want to be cautious - these are early stages," he says. "In our laboratory experiments, we knew we just had one spot or two, and we could assume they had the same intensity. That's not necessarily the case in the real world. But people are already taking these ideas and looking at what happens when you relax those assumptions."

The advance has potential applications both in observing the cosmos, and also in microscopy, where the method can be used to study bonded molecules and other tiny, tight-packed structures.

Regardless of how much phase measurements ultimately improve imaging resolution, Steinberg says the experiment's true value is in shaking up physicists' concept of "where information actually is."

Steinberg's "day job" is in quantum physics - this experiment was a departure for him. He says work in the quantum realm provided key philosophical insights about information itself that helped him beat Rayleigh's Curse.

"When we measure quantum states, you have something called the Uncertainty Principle, which says you can look at position or velocity, but not both. You have to choose what you measure. Now we're learning that imaging is more like quantum mechanics than we realized," he says. "When you only measure intensity, you've made a choice and you've thrown out information. What you learn depends on where you look."

###

Support for the research was provided by by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, and Northrop-Grumman Aerospace Systems NG Next.

Note to media: The study "Beating Rayleigh's Curse by Imaging Using Phase Information" can be found at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.070801.

MEDIA CONTACTS

Aephraim Steinberg
Department of Physics
University of Toronto
+1 416 978 0713
steinberg@physics.utoronto.ca

Edwin (Weng Kian) Tham
Department of Physics
University of Toronto
+1 416 946 3162
wtham@physics.utoronto.ca

Hugo Ferretti
Department of Physics
University of Toronto
hferrett@physics.utoronto.ca

Sean Bettam
Communications Officer, Faculty of Arts & Science
University of Toronto
+1 416 946 7950
s.bettam@utoronto.ca

http://www.utoronto.ca 

Sean Bettam | EurekAlert!

Further reports about: QUANTUM Telescopes waves

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>