Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Nevada, Reno researcher uses 100,000 degree heat to study plasma

04.09.2009
Experiment to shed light on high-energy plasma’s role in astrophysics, energy production and X-rays

Using one of the greatest sources of radiation energy created by man, University of Nevada, Reno researcher and faculty member Roberto Mancini is studying ultra-high temperature and non-equilibrium plasmas to mimic what happens to matter in accretion disks around black holes.

Physics department professor and chair Mancini has received a $690,000 grant from the U.S. Department of Energy to continue his research in high energy density plasma; plasmas are considered to be the fourth state of matter. He will serve as principal investigator for a project titled "Experiments and Modeling of Photo-ionized Plasmas at Z."

"Receiving awards such as this exemplifies the academic caliber and national importance of the work in our Physics Department," Jeff Thompson, dean of the College of Science said. "We're proud of the team of researchers here working on cutting-edge science."

Mancini has been studying the atomic and radiation properties of high-energy density plasmas for more than 15 years, and this new grant will allow him to further explore what happens to matter when it is subjected to extreme conditions of temperature and radiation – similar to what happens to many astrophysical objects in the universe.

The research will enable astrophysicists to better understand what happens around black holes and in active galactic nuclei. Scientists will also better understand the application of high-energy density plasmas to energy production, such as controlled nuclear fusion (produced in the laboratory), and production of X-ray sources for a variety of applications.

"Using theories and tools created here at the University to design and analyze experiments, we then go to the only national facility that has the capacity to deliver the high-intensity flux of X-rays required to perform and measure these experiments," Mancini said. "We custom build instrumentation in our machine shop that meets the high standard set by the national facility so that it will fit onto the target chamber of the pulsed-power Z-machine, enabling us to conduct this unique experiment."

The pulsed-power machine at the Sandia National Laboratories in New Mexico (similar in concept but larger than the University's Nevada Terawatt Facility Zebra accelerator) is the most powerful source of X-rays on earth, Mancini said.

"We subject a very small cell – a 1-inch by ½-inch cube – filled with a gas, such as neon, to this tremendous, short burst of X-ray energy," he said. "It's about 10 nanoseconds of the most intense power on earth – creating conditions of hundreds of thousands of degrees and millions of atmospheres in pressure – in the form of X-rays."

The researchers can then compare their extensive computer modeling and calculations with the measurements so they can study and explain the extreme state of matter (plasma) created during those 10 nanoseconds, which mimics the majority of matter found throughout the universe.

"We are using a unique imaging X-ray spectrometer to measure the intensity distribution of radiation as a function of wavelength, which tells us what happens with the plasma," Mancini said. From detailed analysis of the data, Mancini can extract the plasma's density, ionization and temperature.

He said the plasma reaches extreme conditions, very unlike the low-energy plasma found in a neon light or a plasma television screen, with light 1,000 times more energetic than visible light, temperature as high as 100,000 degrees Fahrenheit, and ionization mainly driven by the action of the X-ray flux going through the plasma.

The University of Nevada, Reno Physics Department has a team of about 20 scientists, faculty and research associates working on a variety of projects in the field of High Energy Density Plasma Physics Research. Mancini emphasized that having strong research programs is critical for the quality of education and training that the University can provide to students.

The U.S. Department of Energy awarded grants to 28 researchers from 18 states as part of a new program in High Energy Density Laboratory Plasmas (HEDLP), a joint program with grants funded by the National Nuclear Security Administration and the Department of Energy Office of Science.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of nearly 17,000 students. The University is home to one the country's largest study-abroad programs and the state's medical school, and offers outreach and education programs in all Nevada counties.

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>