Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Nevada, Reno researcher uses 100,000 degree heat to study plasma

04.09.2009
Experiment to shed light on high-energy plasma’s role in astrophysics, energy production and X-rays

Using one of the greatest sources of radiation energy created by man, University of Nevada, Reno researcher and faculty member Roberto Mancini is studying ultra-high temperature and non-equilibrium plasmas to mimic what happens to matter in accretion disks around black holes.

Physics department professor and chair Mancini has received a $690,000 grant from the U.S. Department of Energy to continue his research in high energy density plasma; plasmas are considered to be the fourth state of matter. He will serve as principal investigator for a project titled "Experiments and Modeling of Photo-ionized Plasmas at Z."

"Receiving awards such as this exemplifies the academic caliber and national importance of the work in our Physics Department," Jeff Thompson, dean of the College of Science said. "We're proud of the team of researchers here working on cutting-edge science."

Mancini has been studying the atomic and radiation properties of high-energy density plasmas for more than 15 years, and this new grant will allow him to further explore what happens to matter when it is subjected to extreme conditions of temperature and radiation – similar to what happens to many astrophysical objects in the universe.

The research will enable astrophysicists to better understand what happens around black holes and in active galactic nuclei. Scientists will also better understand the application of high-energy density plasmas to energy production, such as controlled nuclear fusion (produced in the laboratory), and production of X-ray sources for a variety of applications.

"Using theories and tools created here at the University to design and analyze experiments, we then go to the only national facility that has the capacity to deliver the high-intensity flux of X-rays required to perform and measure these experiments," Mancini said. "We custom build instrumentation in our machine shop that meets the high standard set by the national facility so that it will fit onto the target chamber of the pulsed-power Z-machine, enabling us to conduct this unique experiment."

The pulsed-power machine at the Sandia National Laboratories in New Mexico (similar in concept but larger than the University's Nevada Terawatt Facility Zebra accelerator) is the most powerful source of X-rays on earth, Mancini said.

"We subject a very small cell – a 1-inch by ½-inch cube – filled with a gas, such as neon, to this tremendous, short burst of X-ray energy," he said. "It's about 10 nanoseconds of the most intense power on earth – creating conditions of hundreds of thousands of degrees and millions of atmospheres in pressure – in the form of X-rays."

The researchers can then compare their extensive computer modeling and calculations with the measurements so they can study and explain the extreme state of matter (plasma) created during those 10 nanoseconds, which mimics the majority of matter found throughout the universe.

"We are using a unique imaging X-ray spectrometer to measure the intensity distribution of radiation as a function of wavelength, which tells us what happens with the plasma," Mancini said. From detailed analysis of the data, Mancini can extract the plasma's density, ionization and temperature.

He said the plasma reaches extreme conditions, very unlike the low-energy plasma found in a neon light or a plasma television screen, with light 1,000 times more energetic than visible light, temperature as high as 100,000 degrees Fahrenheit, and ionization mainly driven by the action of the X-ray flux going through the plasma.

The University of Nevada, Reno Physics Department has a team of about 20 scientists, faculty and research associates working on a variety of projects in the field of High Energy Density Plasma Physics Research. Mancini emphasized that having strong research programs is critical for the quality of education and training that the University can provide to students.

The U.S. Department of Energy awarded grants to 28 researchers from 18 states as part of a new program in High Energy Density Laboratory Plasmas (HEDLP), a joint program with grants funded by the National Nuclear Security Administration and the Department of Energy Office of Science.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of nearly 17,000 students. The University is home to one the country's largest study-abroad programs and the state's medical school, and offers outreach and education programs in all Nevada counties.

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>