Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Nevada, Reno researcher uses 100,000 degree heat to study plasma

04.09.2009
Experiment to shed light on high-energy plasma’s role in astrophysics, energy production and X-rays

Using one of the greatest sources of radiation energy created by man, University of Nevada, Reno researcher and faculty member Roberto Mancini is studying ultra-high temperature and non-equilibrium plasmas to mimic what happens to matter in accretion disks around black holes.

Physics department professor and chair Mancini has received a $690,000 grant from the U.S. Department of Energy to continue his research in high energy density plasma; plasmas are considered to be the fourth state of matter. He will serve as principal investigator for a project titled "Experiments and Modeling of Photo-ionized Plasmas at Z."

"Receiving awards such as this exemplifies the academic caliber and national importance of the work in our Physics Department," Jeff Thompson, dean of the College of Science said. "We're proud of the team of researchers here working on cutting-edge science."

Mancini has been studying the atomic and radiation properties of high-energy density plasmas for more than 15 years, and this new grant will allow him to further explore what happens to matter when it is subjected to extreme conditions of temperature and radiation – similar to what happens to many astrophysical objects in the universe.

The research will enable astrophysicists to better understand what happens around black holes and in active galactic nuclei. Scientists will also better understand the application of high-energy density plasmas to energy production, such as controlled nuclear fusion (produced in the laboratory), and production of X-ray sources for a variety of applications.

"Using theories and tools created here at the University to design and analyze experiments, we then go to the only national facility that has the capacity to deliver the high-intensity flux of X-rays required to perform and measure these experiments," Mancini said. "We custom build instrumentation in our machine shop that meets the high standard set by the national facility so that it will fit onto the target chamber of the pulsed-power Z-machine, enabling us to conduct this unique experiment."

The pulsed-power machine at the Sandia National Laboratories in New Mexico (similar in concept but larger than the University's Nevada Terawatt Facility Zebra accelerator) is the most powerful source of X-rays on earth, Mancini said.

"We subject a very small cell – a 1-inch by ½-inch cube – filled with a gas, such as neon, to this tremendous, short burst of X-ray energy," he said. "It's about 10 nanoseconds of the most intense power on earth – creating conditions of hundreds of thousands of degrees and millions of atmospheres in pressure – in the form of X-rays."

The researchers can then compare their extensive computer modeling and calculations with the measurements so they can study and explain the extreme state of matter (plasma) created during those 10 nanoseconds, which mimics the majority of matter found throughout the universe.

"We are using a unique imaging X-ray spectrometer to measure the intensity distribution of radiation as a function of wavelength, which tells us what happens with the plasma," Mancini said. From detailed analysis of the data, Mancini can extract the plasma's density, ionization and temperature.

He said the plasma reaches extreme conditions, very unlike the low-energy plasma found in a neon light or a plasma television screen, with light 1,000 times more energetic than visible light, temperature as high as 100,000 degrees Fahrenheit, and ionization mainly driven by the action of the X-ray flux going through the plasma.

The University of Nevada, Reno Physics Department has a team of about 20 scientists, faculty and research associates working on a variety of projects in the field of High Energy Density Plasma Physics Research. Mancini emphasized that having strong research programs is critical for the quality of education and training that the University can provide to students.

The U.S. Department of Energy awarded grants to 28 researchers from 18 states as part of a new program in High Energy Density Laboratory Plasmas (HEDLP), a joint program with grants funded by the National Nuclear Security Administration and the Department of Energy Office of Science.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of nearly 17,000 students. The University is home to one the country's largest study-abroad programs and the state's medical school, and offers outreach and education programs in all Nevada counties.

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>