Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Minnesota physicists play role in Large Hadron Collider research

31.03.2010
The Large Hadron Collider (LHC) at CERN in Geneva, Switzerland, launched a new era for particle physics today when the first particles collided at the record energy of seven trillion electron volts (TeV).

Particle physicists around the world are celebrating the new achievement and what it will mean to physics research, including progress in the hunt for dark matter, new forces and new dimensions.

These collisions mark the start of a decades-long LHC research program at an energy three and a half times higher than previously achieved at a particle accelerator. CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.

More than 25 University of Minnesota physicists are among the 1,700 international scientists and engineers who have collaborated on designing and building the LHC accelerator and massive particle detectors. The University of Minnesota researchers specifically played a very significant role in the design and construction of one of the two very large general purpose detectors at the LHC.

Two professors who can comment on the latest milestone are:

Roger Rusack, physics professor, School of Physics and Astronomy

Rusack is one of the half dozen University of Minnesota physicists who are in CERN working on the project. Rusack has been actively involved with the LHC since 1993. He helped design and develop many components of the detector and has contributed to the scientific effort and management. He currently is the project manager for the electromagnetic calorimeter, one of the large international components of the detector.

Jeremiah Mans, physics assistant professor, School of Physics and Astronomy

Mans is currently in the Twin Cities, but has been following the progress of the LHC very closely. He and his students have been involved with the LHC's design, building and maintenance of the timing and laser control electronics and the data acquisition software for the Hadron Calorimeter, which will measure the energies of quark-containing particles. The group will also be involved in various aspects of analyzing the data from the LHC.

Media members interested in interviewing professors Rusack or Mans may contact Rhonda Zurn at (612) 626-7959 or rzurn@umn.edu; or Ryan Mathre at (612) 625-0552 or mathre@umn.edu.

Ryan Mathre | EurekAlert!
Further information:
http://www.umn.edu

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>