Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Minnesota physicists play role in Large Hadron Collider research

31.03.2010
The Large Hadron Collider (LHC) at CERN in Geneva, Switzerland, launched a new era for particle physics today when the first particles collided at the record energy of seven trillion electron volts (TeV).

Particle physicists around the world are celebrating the new achievement and what it will mean to physics research, including progress in the hunt for dark matter, new forces and new dimensions.

These collisions mark the start of a decades-long LHC research program at an energy three and a half times higher than previously achieved at a particle accelerator. CERN will run the LHC for 18-24 months with the objective of delivering enough data to the experiments to make significant advances across a wide range of physics channels.

More than 25 University of Minnesota physicists are among the 1,700 international scientists and engineers who have collaborated on designing and building the LHC accelerator and massive particle detectors. The University of Minnesota researchers specifically played a very significant role in the design and construction of one of the two very large general purpose detectors at the LHC.

Two professors who can comment on the latest milestone are:

Roger Rusack, physics professor, School of Physics and Astronomy

Rusack is one of the half dozen University of Minnesota physicists who are in CERN working on the project. Rusack has been actively involved with the LHC since 1993. He helped design and develop many components of the detector and has contributed to the scientific effort and management. He currently is the project manager for the electromagnetic calorimeter, one of the large international components of the detector.

Jeremiah Mans, physics assistant professor, School of Physics and Astronomy

Mans is currently in the Twin Cities, but has been following the progress of the LHC very closely. He and his students have been involved with the LHC's design, building and maintenance of the timing and laser control electronics and the data acquisition software for the Hadron Calorimeter, which will measure the energies of quark-containing particles. The group will also be involved in various aspects of analyzing the data from the LHC.

Media members interested in interviewing professors Rusack or Mans may contact Rhonda Zurn at (612) 626-7959 or rzurn@umn.edu; or Ryan Mathre at (612) 625-0552 or mathre@umn.edu.

Ryan Mathre | EurekAlert!
Further information:
http://www.umn.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>