Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Kent astronomers tune in to ‘Radio Universe’

10.09.2008
Astronomers at the School of Physical Sciences, University of Kent, have joined an innovative project that aims to address many of the key issues in astrophysics.

These include: what is the universe made of and how does it evolve? Are we alone in the universe? How do galaxies, stars and planets form and evolve? What are the laws of physics in extreme conditions? And how does the sun affect the earth? The University’s main role will be to search for signals which accompany the birth of stars.

Such an undertaking will require the completion of arrays of antennas to detect radio waves at metre-long wavelengths. The low frequencies of these waves gives rise to the telescope by the name of LOFAR – the LOw Frequency ARray. The arrays will be spread across the Netherlands, Germany, France and Great Britain.

The processing of the data will be done by a supercomputer situated at the University of Groningen and further radio telescopes may be constructed at sites in Poland, Sweden, Ireland and Ukraine.

Michael Smith, Professor of Astrophysics at the University of Kent, said: ‘The LOFAR project has been launched to advance upon instrumentation based on the old 1960s technologies of radio telescopes that used large mechanical dishes to collect signals which were then detected by a receiver for analysis.

‘Even if scientists continued to use the old technologies, the instruments for this project would need to be one hundred times larger than existing ones, which is cost prohibitive as a high proportion of the outlay on these telescopes is the steel and moving structure. Therefore, new technology was required to make the next step in sensitivity necessary to unravel the secrets of the early universe, the physical processes in the centres of galaxies, and the formation of quasars, stars and planets.’

LOFAR is the first telescope of this new sort, using an array of simple omni-directional antennas instead of mechanical signal processing with a dish. The electronic signals from the antennas are digitised, transported to a central digital processor, and combined in software to emulate a conventional antenna.

Gary Hughes | alfa
Further information:
http://www.kent.ac.uk
http://www.kent.ac.uk/news

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>