Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Arizona Receives Contracts Worth $6M to Support Quest for Dark Energy

05.03.2010
Two University of Arizona research and development groups were selected to develop and manufacture key technology for the first major undertaking to investigate the mystery of dark energy in the universe.

UA's Imaging Technology Laboratory, a research group within Steward Observatory, and the Optical Fabrication and Engineering Facility at the College of Optical Sciences will provide image recording devices and the heart of the optical system used for imaging, respectively, for the Hobby-Eberly Telescope at the McDonald Observatory, which is operated by the University of Texas, Austin.

The additions are part of outfitting the world's fourth largest optical telescope with an array of new instruments to analyze the light from distant galaxies in an effort to understand the nature of dark energy. Scientists have known for a while that dark energy exists, but so far, nobody has been able to come up with an explanation of what it is.

During the Hobby-Eberly Telescope Dark Energy Experiment, or HETDEX, the telescope will search a large area of the sky that encompasses most of the Big Dipper constellation. This region is far above the plane of the Milky Way galaxy, which is filled with clouds of gas and dust that block the view of distant galaxies. During three years of observations, UA's imaging sensors will collect the faint light from at least one million galaxies that are between nine billion and eleven billion light-years away. The data about their movement, size and precise locations with respect to one another will then be computed into the largest three-dimensional map of the universe ever produced.
The Optical Fabrication and Engineering Facility at the College of Optical Sciences was awarded a $4 million contract to devise and build an extremely complex optical device known as a wide field corrector.

"The wide field corrector broadens the telescope's view into space," explained Martin Valente, who directs the facility, "enabling it to survey vast swaths of the sky in a relatively short amount of time."

Ever since the Big Bang, the universe has been expanding and galaxies are moving away from each other. Galaxies attract each other through their immense gravitational forces, which should slow down the expansion of the universe. Instead, the expansion of the universe has sped up over time. This acceleration is attributed to some unknown force – dark energy – counteracting the galaxies' gravitational pull, causing them to spread out deeper into space.

The map of galaxies produced by the HETDEX survey will allow astronomers to measure how fast the universe was expanding at different times in its history. Changes in the expansion rate will reveal the role of dark energy at different epochs. Various explanations for dark energy predict different changes in the expansion rate, so by providing exact measurements of the expansion, the HETDEX map will eliminate some of the competing ideas.

Jim Burge, a professor with joint appointments in the College of Optical Sciences and the College of Science, pointed out that in addition to venturing into uncharted territory by developing innovative optical solutions and devices, education is an important by-product of the process.

"We have students work side by side with faculty and technicians on projects like this one," he said. "They come up with their own solutions to scientific and design challenges, put the systems together and run the tests."

The hands-on experience provides these optical sciences engineers in the making with practical experience, giving them a head start once they enter the engineering workforce.

"Because of the talent and motivation of our students, we are capable of attracting such contracts that bring money to the state, provide opportunities for students, and advance technology," Burge said. "It's a win-win-win situation for Arizona."

The second UA contractor, the Imaging Technology Laboratory, or ITL, has won a $2 million contract with Astronomical Research Cameras, Inc., a small business in California providing the camera electronics, to manufacture about 200 exceptionally sensitive detectors. The devices will be fitted into the telescope's custom-made assemblies (spectrographs) that will record and analyze the light from distant galaxies.

"Our laboratory was selected because of our ability to make highly sensitive sensors," said ITL Director Michael Lesser, a senior research scientist at Steward Observatory. Lesser and his colleagues came up with a unique process to overcome the challenge of producing highly sensitive light detectors. "The way we mount them makes it possible for the light to enter the sensor from the back side and, coupled with optimized thin film coatings, convert 90 percent of the light into image data."
Each spectrograph unit will be identical to all the others, making it possible to mass-produce them in less time and for less money than a single giant spectrograph with the same capabilities.

"It is very special for a university to be involved in a high-volume production process like that," Lesser said. "The typical scale for an academic institution is to make only one or a few prototypes of a given instrument."

The Hobby-Eberly Telescope is a partnership of the University of Texas at Austin, Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität and Georg-August-Universität. The HETDEX project is a collaboration of the University of Texas at Austin, Pennsylvania State University, Texas A&M University, Universitäts-Sternwarte Munich, Astrophysical Institute Potsdam and the Max-Planck-Institut fuer Extraterrestrische Physik.

FROM: Daniel Stolte (520-626-4402; stolte@email.arizona.edu)

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>