Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Université de Montréal astrophysicists 'weigh' galaxy's most massive star

23.09.2008
Findings published in Monthly Notices of Royal Astronomical Society

Theoretical models of stellar formation propose the existence of very massive stars that can attain up to 150 times the mass of our Sun.

Until very recently, however, no scientist had discovered a star of more than 83 solar masses. Now an international team of astrophysicists, led by Université de Montréal researchers from the Centre de recherche en astrophysique du Québec (CRAQ), has found and "weighed" the most massive star to date.

Olivier Schnurr, Jules Casoli and André-Nicolas Chené, all graduates of the Université de Montréal, and professors Anthony F. J. Moffat and Nicole St-Louis, successfully "weighed" a star of a binary system with a mass 116 times greater than that of the Sun, waltzing with a companion of 89 solar masses, doubly beating the previous record and breaking the symbolic barrier of 100 solar masses for the first time.

Located in the massive star cluster NGC 3603, the supermassive star system, known under the name of A1, has a rotation period of 3.77 days. The masses were calculated by a combination of observations made with the SINFONI instrument, an integral field spectrograph operating on the Very Large Telescope on the site of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) in Chile, and infrared images coming from the Hubble Space Telescope.

The stars forming the A1 system are so massive and bright that the light they transmit shows characteristics that only "Wolf-Rayet" stars possess. Within the context of this work, a binary system transmitting X-rays at a power almost never seen in our Galaxy was also discovered near NGC 3603-A1.

Olivier Hernandez | EurekAlert!
Further information:
http://www.astro.umontreal.ca
http://www.umontreal.ca/english/index.htm
http://craq-astro.ca/

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>