Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The universe's most massive stars can form in near isolation, new study finds

New observations by University of Michigan astronomers add weight to the theory that the most massive stars in the universe could form essentially anywhere, including in near isolation; they don't need a large stellar cluster nursery.

This is the most detailed observational study to date of massive stars that appear (from the ground) to be alone. The scientists used the Hubble Space Telescope to zoom in on eight of these giants, which range from 20 to 150 times as massive as the Sun. The stars they looked at are in the Small Magellanic Cloud, a dwarf galaxy that's one of the Milky Way's nearest neighbors.

Their results, published in the Dec. 20 edition of the Astrophysical Journal, show that five of the stars had no neighbors large enough for Hubble to discern. The remaining three appeared to be in tiny clusters of ten or fewer stars.

Doctoral student Joel Lamb and associate professor Sally Oey, both in the Department of Astronomy, explained the significance of their findings.

"My dad used to fish in a tiny pond on his grandma's farm," Lamb said. "One day he pulled out a giant largemouth bass. This was the biggest fish he's caught, and he's fished in a lot of big lakes. What we're looking at is analogous to this. We're asking: 'Can a small pond produce a giant fish? Does the size of the lake determine how big the fish is?' The lake in this case would be the cluster of stars.

"Our results show that you can, in fact, form big stars in small ponds."

The most massive stars direct the evolution of their galaxies. Their winds and radiation shape interstellar gas and promote the birth of new stars. Their violent supernovae explosions create all the heavy elements that are essential for life and the Earth. That's why astronomers want to understand how and where these giant stars form. There is currently a big debate about their origins, Oey said.

One theory is that the mass of a star depends on the size of the cluster in which it is born, and only a large star cluster could provide a dense enough source of gas and dust to bring about one of these massive stars. The opposing theory, and the one that this research supports, is that these monstrous stars can and do form more randomly across the universe—including in isolation and in very small clusters.

"Our findings don't support the scenario that the maximum mass of a star in a cluster has to correlate with the size of the cluster," Oey said.

The researchers acknowledge the possibility that all of the stars they studied might not still be located in the neighborhood they were born in. Two of the stars they examined are known to be runaways that have been kicked out of their birth clusters. But in several cases, the astronomers found wisps of leftover gas nearby, strengthening the possibility that the stars are still in the isolated places where they formed.

The title of the paper is "The Sparsest Clusters With O Stars." The research is funded by NASA and the National Science Foundation.

Nicole Casal Moore | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>