Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique insight into molecules

16.06.2014

Processes on the atomic scale can only be described accurately by using the laws of quantum mechanics. Physicists at the University of Würzburg have now succeeded for the first time to completely determine the state of such a quantum mechanical system in experiments.

"It is a major step towards fully understanding the natural processes at the atomic scale." That is the conclusion a group of Würzburg experimental physicists draws in an article recently published in the renowned Nature Communications journal. Achim Schöll, associate professor at the Department of Experimental Physics VII at the University of Würzburg, and his team together with researchers from Jülich and Trieste have found a way to determine the spatial probability density of electrons in a molecule by experiment.
The laws of quantum mechanics


An image representing a cut through a molecule orbital in the real space was impossible to obtain by experiment in the past. Physicists of the University of Würzburg have now made it possible.

Graphic Schöll work Group

"One has to use the laws of quantum mechanics to describe the processes inside atoms or molecules," Achim Schöll explains. Standard school knowledge of electrons orbiting the atomic nucleus on precise orbits - like moon's orbit around Earth - is not very illuminating when it comes to understanding the world of quantum mechanics. There, particles are treated as complex wave functions; their properties are described by the waves' amplitude and phase.

However, it is extremely difficult to measure these two values by experiment: "It is in the nature of measuring that the phase information gets lost in the process," Schöll says. This is because most experiments measure intensities that correspond to the square of the wave function and thus to the spatial probability density. As a result, the phase information, that is the sign of this function, is lost.

Previous experiments have weak points

This is unsatisfactory from the experimental physicists' point of view. After all, the phase is the decisive value in such fundamental processes as chemical bonding or superconductivity. Therefore, there has been intensive research to find a way to measure this value by experiment. A few methods for measuring the phase do exist already. "But they are not capable of determining the spatial distribution of the electrons at the same time," Schöll explains.

The Würzburg experiment

Schöll and his colleagues have now shown in an experiment that it is indeed possible to measure both phase and spatial probability density at the same time. They accomplished their goal using angle-resolved photoelectron spectroscopy with circular polarized light.

In photoelectron spectroscopy, physicists "bombard" the sample with UV light or X-rays to detach electrons from the sample's surface. The direction of emission and the kinetic energy of these electrons allow scientists to draw conclusions, for example, to the chemical composition and the electronic properties of the solid. Depending on the type of examination, they can also fit the beam of light with specific properties. "Circular polarized light" in this context means: The plane in which the light wave oscillates turns around on a circle – either clockwise or counter-clockwise.

Symmetry provides the wanted information

"Depending on whether we are irradiating our molecule with right or left polarized light, we obtain different intensity distributions," Schöll explains. The difference of these two intensities, the so-called circular dichroism, then shows characteristic symmetries when changing the light's direction of incidence. This allows the phase of the underlying wave function to be derived. This experiment, too, does not return the phase directly. "But we can determine the symmetry of the phase and thus say where the value is positive and where negative," the physicist continues.

Combined with the measurement results of the spatial probability density, the physicists thus get a picture corresponding to a cut through a molecule orbital in the real space. And to know the molecule orbital means to know the molecule's properties as well.

Complete determination of molecular orbitals by measurement of phase symmetry and electron density. M. Wiener, D. Hauschild, C. Sauer, V. Feyer, A. Schöll & F. Reinert. Nature Communications, Published 9 June 2014; DOI: 10.1038/ncomms5156

Contact

Dr. Achim Schöll, T: (0931) 31-85127; achim.schoell@physik.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

Further reports about: Communications electrons experiments function measurement spatial spectroscopy

More articles from Physics and Astronomy:

nachricht Spintronics Advance Brings Wafer-Scale Quantum Devices Closer to Reality
29.06.2015 | University of Chicago

nachricht Red Dwarf Burns Off Planet’s Hydrogen Giving It Massive Comet-Like Tail
29.06.2015 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

Im Focus: Superslippery islands (but then they get stuck)

A simple reversible process that changes friction in the nanoworld

(Nano)islands that slide freely on a sea of copper, but when they become too large (and too dense) they end up getting stuck: that nicely sums up the system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Breaking through a double wall with a sledgehammer

29.06.2015 | Life Sciences

Lean but sated: Molecular Switch for a Healthy Metabolism discovered

29.06.2015 | Life Sciences

Spintronics Advance Brings Wafer-Scale Quantum Devices Closer to Reality

29.06.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>