Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uniform analyses for clean drinking water in Europe

14.12.2009
PTB scientists receive award for concept of comparability and traceability of water analyses

Clean water is a matter of survival for humans, particularly when it is used for drinking, cooking and for food manufacture. Therefore, the EU member countries have in several guidelines undertaken to guarantee their citizens sustainable clean drinking water.

The requirement for this is, however, a water analysis that provides the exact values for possible toxic substances, which are then also internationally comparable. Therefore, scientists from the Physikalisch-Technische Bundesanstalt (PTB), together with researchers from the University of Stuttgart (AQS BW) and the Rhenish-Westphalian Institute for Water Research (IWW) have worked out new metrological concepts as to how the comparability of measurement results can be achieved without additional time and effort. For this work, in November, the researchers received the CITAC Award 2009.

CITAC stands for Cooperation on International Traceability in Analytical Chemistry and is an association of representatives of important industrial countries from all continents. Their goal is to improve the traceability in chemistry at the global level. The international comparability of analytical measurement results is to be ensured, independent of the time and place of its origin. This is of crucial importance for achieving uniform standards of quality for drinking water in all the European countries.

Nationally and internationally, chemical measurements are compared as a rule by round-robin tests. Hereby, the participating laboratories receive samples of unknown concentration for analysis. Until now, a result was deemed to be good if it was as close as possible to the mean value of all participants' results. This so-called consensus value can, however, clearly deviate from the actual concentration and thus possesses a correspondingly large uncertainty. The new concept for conducting round-robin tests by PTB, AQS BW and IWW uses metrologically traceable reference values with possible uncertainties in the range of one percent or less. These reference values serve as a basis for the increasingly required international comparability of measurement values and are, moreover, available to the participating laboratories as reliable reference points for checking the accuracy of their measuring methods.

This is made possible by very accurate sample preparation: The sample preparations are performed by gravimetric or volumetric addition of certain amounts of the analytes to tap water (matrix). The reference values are determined from the added amounts as well as the concentration of the analytes present from the outset in the original tap water. To determine the latter is difficult, however, due to the mostly low concentration. It was now possible to demonstrate that the participants' results could be drawn on to determine the initial concentration of the water. To this end, a method similar to that of the standard addition was developed, with which these initial concentrations were obtained through extrapolation, without additional work expended and with sufficiently good uncertainty.

Contact at PTB:
Detlef Schiel, Working Group 3.11 Inorganic Analytics,
Tel.: +49 531 592-3110, e-mail: detlef.schiel@ptb.de

Olaf Rienitz, Working Group 3.11 Inorganic Analytics,
Tel.: +49 531 592-3318, e-mail: olaf.rienitz@ptb.de

Detlef Schiel | EurekAlert!
Further information:
http://www.ptb.de

Further reports about: AQS Analytic IWW PTB drinking water inorganic toxic substance uniform volumetric addition

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>