Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH space scientists help catch the interstellar wind

19.10.2009
On Thursday, October 15, scientists and engineers from the University of New Hampshire's Space Science Center will celebrate the announcement of the first major results from the National Aeronautics and Space Administration's Interstellar Boundary Explorer (IBEX) mission, which will be published online Thursday in the journal Science in conjunction with a 2 p.m. press conference held at NASA headquarters in Washington, D.C.

The mission launched October 19, 2008 and carries two, ultra-high sensitivity, cameras containing important components designed and built at UNH. From a highly elliptical Earth orbit the IBEX satellite is exploring the outer solar system using unique energetic neutral atom imaging (instead of photons of light) to create maps of the boundary between our solar system and the rest of our galaxy.

The mission's first global, high- and low-energy maps show the interactions between the million-mile-per-hour solar wind and the low-density material between the stars, known as the interstellar medium, which blows through the solar system as a gentler 60,000-mile-per-hour interstellar wind due to the Sun's motion through our galactic neighborhood.

The maps provide a "big-picture" view of the region in space where the solar wind collides with interstellar gas to form the termination shock – the boundary of the huge, magnetic bubble that surrounds the Sun known as the heliosphere. The heliosphere is the Earth's first layer of protection from high-energy cosmic rays. The high-energy maps, which contain a bright "ribbon" snaking across the sky that nobody had expected, provide modelers with new real-world constraints needed to better understand how magnetic fields in the surrounding interstellar medium shape our heliosphere.

According to mission co-investigator Eberhard Möbius of the UNH Institute for the Study of Earth, Oceans, and Space and the Department of Physics, the capability to use neutral atoms to create an image has also allowed scientists to "catch and analyze the interstellar wind at Earth's doorstep."

Says Möbius, "What we have managed to do for the first time is catch the interstellar wind for three species of energetic neutral atoms – helium, hydrogen, and oxygen." This image shows up as the brightest feature in the low-energy maps.

Like water flowing around a rock in a river, the electrically charged "plasma" component of the interstellar medium is forced around the heliosphere due to electrical and magnetic forces (a fraction of all interstellar atoms have lost electrons, the resulting mix of positive ions and negative electrons forms a plasma). While passing through this region, neutral hydrogen and oxygen atoms are partially dragged along by the plasma whereas neutral helium passes straight through. By comparing the arrival directions of these three different species at the IBEX spacecraft, scientists extract the subtle deflection at the boundary of the heliosphere and, thus, learn about the forces that shape it.

"We're just now getting a handle on the interaction of the surrounding interstellar medium with the heliosphere and that's providing us with the big picture," Möbius says. More broadly, the IBEX data will help scientists understand the underlying physics operating in this same boundary region – the astrosphere – of other stars.

"The new and unexpected findings by IBEX will revolutionize our understanding of the heliosphere", says IBEX principal investigator Dave McComas, of the Southwest Research Institute.

Scientists and engineers at the UNH Space Science Center designed and built a major portion of IBEX's sensor payload – the "time-of-flight" mass spectrometer that can identify specific species of energetic neutral atoms, the iris or "collimator" of the specialized cameras, and the star sensor that tells with very high accuracy from which direction the interstellar gas is coming. Two undergraduate students, Morgan O'Neill and George Clark, conducted independent research calibrating the star sensor over their four years at UNH – work that helped launch them both into Ph.D. programs upon graduation.

IBEX is the latest in NASA's series of low-cost, rapidly developed Small Explorers space missions. Southwest Research Institute (SwRI) in San Antonio, TX, leads and developed the mission with a team of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.

Funding for UNH's role in the IBEX mission was received from NASA under a subcontract with SwRI.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 11,800 undergraduate and 2,400 graduate students.

Image available to download: http://www.eos.unh.edu/newsimage/ibex_sci_lg.jpg.

Photo caption: Arrival of interstellar hydrogen, helium, and oxygen atoms as seen in the IBEX-Lo sky maps. The Sun's gravitation deflects the interstellar wind away from its original arrival direction, i.e. coming from the nose of the heliosphere. (Image by the University of New Hampshire and Boston University)

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>