Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH scientists launch NASA rocket into Aurora

22.02.2012
With the full sky shimmering in green aurora, Saturday night (Feb. 18, 2012) a team of scientists, including space physicist Marc Lessard and graduate students from the University of New Hampshire's Space Science Center, launched an instrument-laden, two-stage sounding rocket from the Poker Flat Research Range in Fairbanks, Alaska. The precision measurements from the rocket's instruments will shed new light on the physical processes that create the northern lights and further our understanding of the complex sun-Earth connection.

Funded by the National Aeronautics and Space Administration (NASA), the Magnetosphere-Ionosphere Coupling in the Alfvén resonator (MICA) mission sent a 40-foot Terrier-Black Brant rocket arcing through aurora 186 miles above Earth. The rocket sent a stream of real-time data back before landing some 200 miles downrange shortly after the launch.

Instruments onboard, including those built at UNH, sampled electric and magnetic fields as well as charged particles in Earth's upper atmosphere (ionosphere) that get sloshed back and forth by a specific form of electromagnetic energy known as Alfvén waves. These waves are thought to be a key driver of "discrete" aurora – the typical, well-defined band of shimmering lights about six miles thick and stretching east to west from horizon to horizon.

The mission involves collaborators from Cornell University, Dartmouth College, the Southwest Research Institute, the University of Alaska Fairbanks, and the University of Oslo.

According to Lessard, an associate professor at the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and department of physics, the Alfvén resonator is a structure in the ionosphere that acts like a guitar string when "plucked" by energy delivered by the solar wind to Earth's magnetosphere high above.

"The ionosphere, some 62 miles up, is one end of the guitar string and there's another structure over a thousand miles up in space that is the other end of the string. When it gets plucked by incoming energy we can get a fundamental frequency and other 'harmonics' along the background magnetic field sitting above the ionosphere," Lessard says.

The Alfvén resonator is a narrow, confined area of space – a channel that is perhaps several hundreds of miles tall but only six miles wide. It is hypothesized that energy from the sun accelerates a beam of electrons producing aurora and also increasing the overall electrical conductivity within the channel. Understanding how the ionosphere participates in providing the downward current is a critical component of understanding magnetosphere-ionosphere coupling.

"The process turns on an auroral arc and then these waves develop on both sides of the resonator moving up and down. That's the theory and it appears to be valid, but there's never been any really good measurement of the process in action. That's what MICA is all about," Lessard says.

MICA will provide insight into these wave-driven aurora specifically, but Lessard notes there are other types of aurora that are initiated by different processes and these, too, were investigated at ground-based stations during the MICA launch by scientists, including Allison Jaynes and Ian Cohen, both Ph.D. students working with Lessard in the Magnetosphere-Ionosphere Research Laboratory at EOS.

UNH has a rich history of sounding rocket development and launches dating back to the early 1960s. As Lessard notes, rocket work is ideal training ground for graduate students, as it was for him at UNH, because, unlike satellite missions, rocket missions generally offer "soup to nuts" involvement from design, construction, launch, and data analysis. Rockets also offer relatively quick and inexpensive access to space compared to satellite missions.

As for the significance of continued investigation into auroral processes, Lessard notes, "It's all about understanding how the energy of the solar wind gets coupled to Earth's magnetic field and eventually gets dumped into the our upper atmosphere."

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photographs to download:

http://www.eos.unh.edu/newsimage/mica1_lg.jpg

http://www.eos.unh.edu/newsimage/mica2_lg.jpg

Captions: A two-stage Terrier-Black Brant rocket arced through aurora 200 miles above Earth as the Magnetosphere-Ionosphere Coupling in the Alfvén resonator (MICA) mission investigated the underlying physics of the northern lights. Stage one of the rocket has just separated and is seen falling back to Earth. Photo by Terry E. Zaperach, NASA.

A fisheye photo taken by an automated camera near the entrance gate at the Poker Flat Research Range in Fairbanks, Alaska. Photo by Donald Hampton.

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>