Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UNH scientists launch NASA rocket into Aurora

With the full sky shimmering in green aurora, Saturday night (Feb. 18, 2012) a team of scientists, including space physicist Marc Lessard and graduate students from the University of New Hampshire's Space Science Center, launched an instrument-laden, two-stage sounding rocket from the Poker Flat Research Range in Fairbanks, Alaska. The precision measurements from the rocket's instruments will shed new light on the physical processes that create the northern lights and further our understanding of the complex sun-Earth connection.

Funded by the National Aeronautics and Space Administration (NASA), the Magnetosphere-Ionosphere Coupling in the Alfvén resonator (MICA) mission sent a 40-foot Terrier-Black Brant rocket arcing through aurora 186 miles above Earth. The rocket sent a stream of real-time data back before landing some 200 miles downrange shortly after the launch.

Instruments onboard, including those built at UNH, sampled electric and magnetic fields as well as charged particles in Earth's upper atmosphere (ionosphere) that get sloshed back and forth by a specific form of electromagnetic energy known as Alfvén waves. These waves are thought to be a key driver of "discrete" aurora – the typical, well-defined band of shimmering lights about six miles thick and stretching east to west from horizon to horizon.

The mission involves collaborators from Cornell University, Dartmouth College, the Southwest Research Institute, the University of Alaska Fairbanks, and the University of Oslo.

According to Lessard, an associate professor at the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and department of physics, the Alfvén resonator is a structure in the ionosphere that acts like a guitar string when "plucked" by energy delivered by the solar wind to Earth's magnetosphere high above.

"The ionosphere, some 62 miles up, is one end of the guitar string and there's another structure over a thousand miles up in space that is the other end of the string. When it gets plucked by incoming energy we can get a fundamental frequency and other 'harmonics' along the background magnetic field sitting above the ionosphere," Lessard says.

The Alfvén resonator is a narrow, confined area of space – a channel that is perhaps several hundreds of miles tall but only six miles wide. It is hypothesized that energy from the sun accelerates a beam of electrons producing aurora and also increasing the overall electrical conductivity within the channel. Understanding how the ionosphere participates in providing the downward current is a critical component of understanding magnetosphere-ionosphere coupling.

"The process turns on an auroral arc and then these waves develop on both sides of the resonator moving up and down. That's the theory and it appears to be valid, but there's never been any really good measurement of the process in action. That's what MICA is all about," Lessard says.

MICA will provide insight into these wave-driven aurora specifically, but Lessard notes there are other types of aurora that are initiated by different processes and these, too, were investigated at ground-based stations during the MICA launch by scientists, including Allison Jaynes and Ian Cohen, both Ph.D. students working with Lessard in the Magnetosphere-Ionosphere Research Laboratory at EOS.

UNH has a rich history of sounding rocket development and launches dating back to the early 1960s. As Lessard notes, rocket work is ideal training ground for graduate students, as it was for him at UNH, because, unlike satellite missions, rocket missions generally offer "soup to nuts" involvement from design, construction, launch, and data analysis. Rockets also offer relatively quick and inexpensive access to space compared to satellite missions.

As for the significance of continued investigation into auroral processes, Lessard notes, "It's all about understanding how the energy of the solar wind gets coupled to Earth's magnetic field and eventually gets dumped into the our upper atmosphere."

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photographs to download:

Captions: A two-stage Terrier-Black Brant rocket arced through aurora 200 miles above Earth as the Magnetosphere-Ionosphere Coupling in the Alfvén resonator (MICA) mission investigated the underlying physics of the northern lights. Stage one of the rocket has just separated and is seen falling back to Earth. Photo by Terry E. Zaperach, NASA.

A fisheye photo taken by an automated camera near the entrance gate at the Poker Flat Research Range in Fairbanks, Alaska. Photo by Donald Hampton.

David Sims | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>