Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncloaking the King of the Milky Way: The largest star in our home galaxy's largest stellar nursery

28.08.2014

Astronomers led by Shiwei Wu of the Max Planck Institute for Astronomy have identified the most massive star in our home galaxy's largest stellar nursery, the star-forming region W49.

The star, named W49nr1, has a mass between 100 and 180 times the mass of the Sun. Only a few dozen of these very massive stars have been identified so far. As seen from Earth, W49 is obscured by dense clouds of dust, and the astronomers had to rely on near-infrared images from ESO's New Technology Telescope and the Large Binocular Telescope to obtain suitable data. The discovery is hoped to shed light on the formation of massive stars, and on the role they play in the biggest star clusters.


An infrared colour composite image of the central area of W49. The massive star W49nr1 is indicated with a white arrow.

S.-W. Wu, A. Bik, Th. Henning, A. Pasquali, W. Brandner, A. Stolte. J and H-band data originally published in Alves and Homeier 2003.

The discovery of a new, very massive star is exciting to astronomers for more than one reason: Very massive stars, more than 100 times the mass of our own Sun, are something of an astronomical mystery. They are very short-lived (a few million years compared to the 10 billion years of stars like our Sun), which is one reason they are so rare. Among the billions of stars catalogued and examined by astronomers, these very massive specimens amount to no more than a few dozen, most of them discovered over the past few years.

Though rare, the massive stars have a decisive influence on their surroundings. They are extremely bright, giving off large amounts of highly energetic UV radiation as well as streams of particles (stellar wind). Typically, such a star will create a bubble around itself, ionizing any nearby gas, and pushing more distant gas ever farther away. Some of this pushed-away gas might actually cause distant gas clouds to collapse, triggering the birth of new stars.

Until a few years ago, there was even doubt whether such stars could form at all. Theorists have only quite recently managed to simulate the genesis of these massive bodies, and there are now several competing explanations for very massive star formation. In some models, such a star is the result of the merger between two stars forming in an extended star cluster. Up to now, there had only been three clusters (NGC 3603 and the Arches Cluster in our galaxy, R136 in the Large Magellanic Cloud) where such massive stars had actually been found.

Now, a team of astronomers lead by Shiwei Wu from the Max Planck Institute for Astronomy (MPIA) has discovered such a massive star, and not in any location, but in the largest star-forming region known in our Milky Way galaxy, which is called W49. The discovery was a challenging task: W49 is located at a distance of 36,000 light-years (11.1 kpc), almost half-way across our home galaxy, cloaked by the dust of two spiral arms that lie between us and the cluster.

Shiwei Wu explains: „Because W49 is hidden behind huge regions of interstellar dust, only one trillionth of the visible light it sends in our direction actually reaches Earth. That’s why we observed the cluster’s infrared light, which can pass through dust almost unhindered.”

Using a spectrum obtained with the European Southern Observatory’s Very Large Telescope in the infrared, the astronomers could determine the star’s type (“O2-3.5If* star”) and use this information and the star’s measured brightness to estimate its temperature and total light emission. Comparison with models for stellar evolution give an estimate of the star’s mass between 100 and 180 solar masses.

Because of the cluster’s size, W49 is one of the most important sites within our galaxy for studying the formation and evolution of very massive stars – and with W49nr1, the astronomers have now identified the cluster’s key object. With this and future observations, they have hopes of settling one of astronomy’s weightiest open questions: the birth of our galaxy’s most massive stars.

Contact

Shiwei Wu (first author)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 –528 203
email: shiwei@mpia.de

Klaus Jäger (public information officer)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 379
email: pr@mpia.de

Background information

Further images and the original press release can be found here:

http://www.mpia.de/Public/menu_q2e.php?Aktuelles/PR/2014/PR_2014_07/PR_2014_07_e...

The results described here have been published as S.-W. Wu et al., “The Discovery of a Very Massive Star in W49” by the journal Astronomy & Astrophysics.

http://dx.doi.org/10.1051/0004-6361/201424154

The co-authors are Shi-Wei Wu (Max Planck Institute for Astronomy [MPIA]), Arjan Bik (MPIA and Stockholm University), Thomas Henning (MPIA), Anna Pasquali (ZAH, Heidelberg University), Wolfgang Brandner (MPIA) and Andrea Stolte (Argelander Institute for Astronomy, Bonn).

The study is based on a medium-resolution K-band spectrum taken with the ISAAC instrument mounted at ESO's Very Large Telescope in Chile. Infrared images were obtained with SOFI at the New Technology Telescope at ESO's La Silla Observatory (J- and H-Band), and with LUCI mounted at the Large Binocular Telescope in Arizona (K-Band).

Dr. Klaus Jäger | Max-Planck-Institut

Further reports about: Astronomie Astronomy Earth MPIA Max-Planck-Institut Sun Technology Telescope images

More articles from Physics and Astronomy:

nachricht Knots in chaotic waves
29.07.2016 | University of Bristol

nachricht International team of scientists unveils fundamental properties of spin Seebeck effect
29.07.2016 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>