Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to unbalance Nothingness

28.10.2011
Physicists of the Universities Jena and Graz Calculate the Time Development of the Vacuum Decay

Nothingness – this is the research subject-matter of a team of theoretical physicists from the Universities Jena (Germany) and Graz (Austria). “The ground state of our world can’t be described by the absence of all matter,” Professor Dr. Holger Gies from the Institute of Theoretical Physics of the Friedrich-Schiller-University Jena and the Helmholtz-Institute Jena explains. ”This so-called quantum vacuum rather turns out to be a complex state of constantly fluctuating quantum fields with physical properties.”

The world-wide community of physicists is hoping to be able to witness a particularly spectacular characteristic in a few years’ time: the spontaneous decay of the vacuum into pairs of particles of matter and antimatter in super strong electric fields. Due to the new research results of the Austro-German team of physicists, this goal came a few steps closer.

Although first theoretical consideration concerning the spontaneous decay of the vacuum dates back to the year 1931, its comprehensive understanding is still in its infancy. „A great challenge in modern theoretical physics is the description of quantum fields out of equilibrium,” Professor Gies explains. “We are facing this problem in phase transitions in the early Universe as well as in many experiments in solid state physics." Therefore experimental proof of the vacuum decay – as it might be delivered by high intensity lasers in the near future – will provide knowledge exceeding this particular field.

The scientists from Graz and Jena now succeeded calculating the time evolution of the vacuum decay in detail. ”Even we were surprised by the results," Professor Gies confesses. According to the results particles of matter and antimatter behave in a novel self-focusing way and therefore the possibility of discovering them is higher than expected. "The quantum vacuum has already had some surprises in store,” says the Heisenberg-Professor for Theoretical Physics. “To unbalance this nothingness could develop into a new prolific field of research."

The results of this co-operation have just been published in the renowned scientific journal ‘Physical Review Letters’: http://link.aps.org/doi/10.1103/PhysRevLett.107.180403.

Original-Publication:
F. Hebenstreit, R. Alkofer, H. Gies: Particle Self-Bunching in the Schwinger Effect in Spacetime-Dependent Electric Fields, Phys. Rev. Lett. 107, 180403 (2011), DOI: 10.1103/PhysRevLett.107.180403
Contact Details:
Prof. Dr. Holger Gies
Institute of Theoretical Physics of Friedrich-Schiller-University Jena
& Helmholtz-Institute Jena
Max-Wien-Platz 1
D-07743 Jena
Tel.: 0049 (0)3641 / 947190
Email: Holger.Gies[at]uni-jena.de

Axel Burchardt | idw
Further information:
http://link.aps.org/doi/10.1103/PhysRevLett.107.180403
http://www.tpi.uni-jena.de/~gies/welcome.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>