Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to unbalance Nothingness

28.10.2011
Physicists of the Universities Jena and Graz Calculate the Time Development of the Vacuum Decay

Nothingness – this is the research subject-matter of a team of theoretical physicists from the Universities Jena (Germany) and Graz (Austria). “The ground state of our world can’t be described by the absence of all matter,” Professor Dr. Holger Gies from the Institute of Theoretical Physics of the Friedrich-Schiller-University Jena and the Helmholtz-Institute Jena explains. ”This so-called quantum vacuum rather turns out to be a complex state of constantly fluctuating quantum fields with physical properties.”

The world-wide community of physicists is hoping to be able to witness a particularly spectacular characteristic in a few years’ time: the spontaneous decay of the vacuum into pairs of particles of matter and antimatter in super strong electric fields. Due to the new research results of the Austro-German team of physicists, this goal came a few steps closer.

Although first theoretical consideration concerning the spontaneous decay of the vacuum dates back to the year 1931, its comprehensive understanding is still in its infancy. „A great challenge in modern theoretical physics is the description of quantum fields out of equilibrium,” Professor Gies explains. “We are facing this problem in phase transitions in the early Universe as well as in many experiments in solid state physics." Therefore experimental proof of the vacuum decay – as it might be delivered by high intensity lasers in the near future – will provide knowledge exceeding this particular field.

The scientists from Graz and Jena now succeeded calculating the time evolution of the vacuum decay in detail. ”Even we were surprised by the results," Professor Gies confesses. According to the results particles of matter and antimatter behave in a novel self-focusing way and therefore the possibility of discovering them is higher than expected. "The quantum vacuum has already had some surprises in store,” says the Heisenberg-Professor for Theoretical Physics. “To unbalance this nothingness could develop into a new prolific field of research."

The results of this co-operation have just been published in the renowned scientific journal ‘Physical Review Letters’: http://link.aps.org/doi/10.1103/PhysRevLett.107.180403.

Original-Publication:
F. Hebenstreit, R. Alkofer, H. Gies: Particle Self-Bunching in the Schwinger Effect in Spacetime-Dependent Electric Fields, Phys. Rev. Lett. 107, 180403 (2011), DOI: 10.1103/PhysRevLett.107.180403
Contact Details:
Prof. Dr. Holger Gies
Institute of Theoretical Physics of Friedrich-Schiller-University Jena
& Helmholtz-Institute Jena
Max-Wien-Platz 1
D-07743 Jena
Tel.: 0049 (0)3641 / 947190
Email: Holger.Gies[at]uni-jena.de

Axel Burchardt | idw
Further information:
http://link.aps.org/doi/10.1103/PhysRevLett.107.180403
http://www.tpi.uni-jena.de/~gies/welcome.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>