Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMD physicists discover 'smoke rings' made of laser light

09.09.2016

3-D ring structures made by high-intensity lasers could aid the design of powerful microscopes and more efficient telecommunication lines

Most basic physics textbooks describe laser light in fairly simple terms: a beam travels directly from one point to another and, unless it strikes a mirror or other reflective surface, will continue traveling along an arrow-straight path, gradually expanding in size due to the wave nature of light. But these basic rules go out the window with high-intensity laser light.


Orbital angular momentum (OAM) vortices (pink ringlike objects) are three-dimensional laser light structures that rotate around a central beam, much like water circles around a drain. Physicists and engineers have studied this type of laser vortex since the 1990s as a tool to help improve microscopy and telecommunications.

Credit: Howard Milchberg


Spatiotemporal optical vortices, or STOVs (thin, gray ringlike objects), are newly described three-dimensional light structures that strongly resemble smoke rings. Unlike other laser vortices, STOVs are time dynamic, which means that they travel along with the central laser pulse. Compared to other laser vortices, STOVs could prove more broadly useful for engineering applications.

Credit: Howard Milchberg

Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. In these donut-shaped light structures, known as "spatiotemporal optical vortices," the light energy flows through the inside of the ring and then loops back around the outside.

The vortices travel along with the laser pulse at the speed of light and control the energy flow around it. The newly discovered optical structures are described in the September 9, 2016 issue of the journal Physical Review X.

The researchers named the laser smoke rings "spatiotemporal optical vortices," or STOVs. The light structures are ubiquitous and easily created with any powerful laser, given the right conditions. The team strongly suspects that STOVs could explain decades' worth of anomalous results and unexplained effects in the field of high-intensity laser research.

"Lasers have been researched for decades, but it turns out that STOVs were under our noses the whole time," said Howard Milchberg, professor of physics and electrical and computer engineering at UMD and senior author of the research paper, who also has an appointment at the UMD Institute for Research in Electronics and Applied Physics (IREAP). "This is a robust, spontaneous feature that's always there. This phenomenon underlies so much that's been done in our field for the past 30-some years."

More conventional spatial optical vortices are well-known from prior research--chief among them "orbital angular momentum" (OAM) vortices, where light energy circulates around the beam propagation direction much like water rotates around a drain as it empties from a washbasin. Because these vortices can influence the shape of the central beam, they have proven useful for advanced applications such as high-resolution microscopy.

"Conventional optical vortices have been studied since the late 1990s as a way to improve telecommunications, microscopy and other applications. These vortices allow you to control what gets illuminated and what doesn't, by creating small structures in the light itself," said the paper's lead author Nihal Jhajj, a physics graduate student who conducted the research at IREAP.

"The smoke ring vortices we discovered may have even broader applications than previously known optical vortices, because they are time dynamic, meaning that they move along with the beam instead of remaining stationary," Jhajj added. "This means that the rings may be useful for manipulating particles moving near the speed of light."

Jhajj and Milchberg acknowledge that much more work needs to be done to understand STOVs, including their physical and theoretical implications. But they are particularly excited for new opportunities that will arise in basic laser research following their discovery of STOVs.

"All the evidence we've seen suggests that STOVs are universal," Jhajj said. "Now that we know what to look for, we think that looking at a high-intensity laser pulse propagating through a medium and not seeing STOVs would be a lot like looking at a river and not seeing eddies and currents."

Eventually, STOVs might have useful real-world applications, like their more conventional counterparts. For example, OAM vortices have been used in the design of more powerful stimulated emission depletion (STED) microscopes. STED microscopes are capable of much higher resolution than traditional confocal microscopes, in part due to the precise illumination offered by optical vortices.

With the potential to travel with the central beam at the speed of light, STOVs could have as-yet unforeseen advantages in technological applications, including the potential to expand the effective bandwidth of fiber-optic communication lines.

"A STOV is not just a spectator to the laser beam, like an angel's halo," explained Milchberg, noting the ability of STOVs to control the central beam's shape and energy flow. "It is more like an electrified angel's halo, with energy shooting back and forth between the halo and the angel's head. We're all very excited to see where this discovery will take us in the future."

###

In addition to Jhajj and Milchberg, coauthors on the study include IREAP Associate Research Scientist Jared Wahlstrand and physics/IREAP graduate students Sina Zahedpour, Ilia Larkin and Eric Rosenthal.

The research paper, "Spatio-temporal optical vortices," Nihal Jhajj, Ilia Larkin, Eric Rosenthal, Sina Zahedpour, Jared Wahlstrand, and Howard Milchberg, appears in the September 9, 2016 issue of the journal Physical Review X.

This work was supported by the Defense Advanced Research Projects Agency (Award No. W911NF1410372), the Air Force Office of Scientific Research (Award No. FA95501310044), the National Science Foundation (Award No. PHY1301948), and the Army Research Office (Award No. W911NF1410372). The content of this article does not necessarily reflect the views of these organizations.

Media Contact

Abby Robinson
abbyr@umd.edu
301-405-5845

 @UMDRightNow

http://www.umdrightnow.umd.edu/ 

Abby Robinson | EurekAlert!

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>