Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst team offers new, simpler law of complex wrinkle patterns

26.02.2016

UMass Amherst and Oxford University researchers describe a new, more general law for predicting the wavelength of complex wrinkle patterns, including those found on curved surfaces, plus experimental results to support it

In a new paper, researchers at the University of Massachusetts Amherst and Oxford University describe a new, more general law for predicting the wavelength of complex wrinkle patterns, including those found on curved surfaces, plus experimental results to support it.


A thin floating film is being poked from underneath. New arguments by researchers at UMass Amherst and Oxford University explain the observed wrinkle pattern.

Credit: UMass Amherst/J.D. Paulsen

The work is expected to help materials scientists to use wrinkles to sculpt surface topography, or to use the wrinkles on surfaces to infer the properties of the underlying materials such as textiles and biological tissues.

Physicist Narayanan Menon points out that the work is crucial for understanding how wrinkle wavelength depends on properties of the sheet and the underlying liquid or solid. Findings appear this month in an early online issue of Proceedings of the National Academy of Sciences.

As he explains, "Wrinkles sometimes appear in nature in the form of regular, parallel corrugations such as the furrows on your forehead or the ripples formed when you blow on a cup of hot chocolate. Physicists understand the characteristic spacing between these wrinkles, known as the wrinkle wavelength, as a compromise between the thin skin, which resists being bent into a very fine pattern, and the underlying material, which resists bulging into a coarser pattern. But our understanding is limited to cases where the wrinkles are uniform, and laid out in parallel lines on a flat surface."

He adds that, of course, most naturally occurring wrinkles do not satisfy these ideal situations. Most wrinkles in nature are more complicated; they often bend and splay, or are carried on a curved surface such as the outside of a cell, on a lens, an elbow or the bark of a tree.

The new law developed by a team including physicists Menon and Benny Davidovitch, with polymer scientist Thomas Russell at UMass Amherst and mathematician Dominic Vella of Oxford University, offers a scheme to quantitatively explain the wrinkle wavelength in more realistic situations.

The authors explain, "We propose a local law that incorporates both mechanical and geometrical effects on the spatial variation of wrinkle wavelength. Our experiments on thin polymer films provide strong evidence for its validity." Menon adds, "A 'local' law explains the appearance of the wrinkles at a given location by the underlying properties of the materials at that location, without having to consider how these properties vary from place to place."

###

Experiments conducted by former UMass Amherst postdoctoral researcher Joseph Paulsen, now at Syracuse University, and former graduate students Hunter King and Jiangshui Huang, establish the law's validity and point the way to further puzzles. The study was funded by a grant from the W.M. Keck Foundation.

Media Contact

Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>