Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM Scientists Advance Quantum Computing & Energy Conversion Tech

05.07.2010
Using a unique hybrid nanostructure, University of Maryland researchers have shown a new type of light-matter interaction and also demonstrated the first full quantum control of qubit spin within very tiny colloidal nanostructures (a few nanometers), thus taking a key step forward in efforts to create a quantum computer.

Published in the July 1 issue of Nature, their research builds on work by the same Maryland research team published in March in the journal Science (3-26-10). According to the authors and outside experts, the new findings further advance the promise these new nanostructures hold for quantum computing and for new, more efficient, energy generation technologies (such as photovoltaic cells), as well as for other technologies that are based on light-matter interactions like biomarkers.

"The real breakthrough is that we use a new technology from materials science to 'shed light' on light-matter interactions and related quantum science in ways that we believe will have important applications in many areas, particularly energy conversion and storage and quantum computing," said lead researcher Min Ouyang, an assistant professor in the department of physics and in the university's Maryland NanoCenter. "In fact, our team already is applying our new understanding of nanoscale light-matter interactions and advancement of precise control of nanostructures to the development of a new type of photovoltaic cell that we expect to be significantly more efficient at converting light to electricity than are current cells."

Ouyang and the other members of the University of Maryland team -- research scientist Jiatao Zhang, and students Kwan Lee and Yun Tang -- have created a patent-pending process that uses chemical thermodynamics to produce, in solution, a broad range of different combination materials, each with a shell of structurally perfect mono-crystal semiconductor around a metal core. In the research published in this week's Nature, the researchers used hybrid metal/semiconductor nanostructures developed through this process to experimentally demonstrate "tunable resonant coupling" between a plasmon (from metal core) and an exciton (from semiconductor shell), with a resulting enhancement of the Optical Stark Effect. This effect was discovered some 60 years ago in studies of the interaction between light and atoms that showed light can be applied to modify atomic quantum states.

Nanostructures, Large Advances
"Metal-semiconductor heteronanostructures have been investigated intensely in the last few years with the metallic components used as nanoscale antennas to couple light much more effectively into and out of semiconductor nanoscale, light-emitters," said Garnett W. Bryant, leader of the Quantum Processes and Metrology Group in the Atomic Physics Division of the National Institute of Standards and Technology (NIST). "The research led Min Ouyang shows that a novel heteronanostructure with the semiconductor surrounding the metallic nanoantenna can achieve the same goals. Such structures are very simple and much easier to make than previously attempted, greatly opening up possibilities for application. Most importantly, they have demonstrated that the light/matter coupling can be manipulated to achieve coherent quantum control of the semiconductor nanoemitters, a key requirement for quantum information processing," said Bryant, who is not involved with this research. Bryant also is a scientist in the Joint Quantum Institute, a leading center of quantum science research that is a partnership between NIST and the University of Maryland.

Ouyang and his colleagues agree that their new findings were made possible by their crystal-metal hybrid nanostructures, which offer a number of benefits over the epitaxial structures used for previous work. Epitaxy has been the principle way to create single crystal semiconductors and related devices. The new research highlights the new capabilities of these UM nanostructures, made with a process that avoids two key constraints of epitaxy -- a limit on deposition semiconductor layer thickness and a rigid requirement for "lattice matching."

The Maryland scientists note that, in addition to the enhanced capabilities of their hybrid nanostructures, the method for producing them doesn't require a clean room facility and the materials don't have to be formed in a vacuum, the way those made by conventional epitaxy do. "Thus it also would be much simpler and cheaper for companies to mass produce products based on our hybrid nanostructures," Ouyang said.

UM: Addressing Big Issues, Exploring Big Ideas
Every day University of Maryland faculty and student researchers are making a deep impact on the scientific, technological, political, social, security and environmental challenges facing our nation and world. Working in partnership with federal agencies, and international and industry collaborators, they are advancing knowledge and solutions in a areas such as climate change, global security, energy, public health, information technology, food safety and security, and space exploration.

"Tailoring light-matter-spin interactions in colloidal hetero-nanostructures" Jiatao Zhang, Yun Tang, Kwan Lee, Min Ouyang, Nature, July 1, 2010.

This work was supported by the Office of Naval Research, the National Science Foundation (NSF), and Beckman Foundation. Facility support was from Maryland Nanocenter and its Nanoscale Imaging, Spectroscopy, and Properties Laboratory, which is supported in part by the NSF as a Materials Research Science and Engineering Centers shared experiment facility.

Media Contact
Lee Tune
Associate Director
University Communications
University of Maryland
301-405-4679
ltune@umd.edu
Science Contact
Min Ouyang
Assistant Professor
Department of Physics
University of Maryland, College Park
301-405-5985
mouyang@umd.edu

Lee Tune | EurekAlert!
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>