Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrashort and Extremely Precise

01.09.2016

A group of theoretical physicists headed by Oriol Romero-Isart from the Institute for Quantum Optics and Quantum Information and the University of Innsbruck observes a surprising quantum effect when short light pulses interact with matter. In the future, this effect may be used for developing a completely new type of far-field light nanoscopes.

The invention of the light microscope marks the beginning of modern science; its application has enabled scientists to answer fundamental scientific questions. Microscopes are still an extremely important tool in research and are standard equipment in many laboratories.


Innsbruck physicists observe a surprising quantum effect when short light pulses interact with matter.

Patrick Maurer

Chemistry Nobel laureate Stefan Hell coined the term nanoscopes for describing high-resolution or far-field light microscopes because they also show objects in the nanometer sphere. Together with Ignacio Cirac from the Max-Planck Institute for Quantum Optics in Garching, Oriol Romero-Isart and PhD student Patrick Maurer have now made a discovery that may lead to a completely new scheme for far-field light nanoscopy.

The light’s wavelength poses a limit to the resolution of light microscopes. However, by applying some technical adjustments, scientists are able to circumvent the obstacles and achieve higher resolutions. In a theoretical paper published in the current issue of Physical Review Letters, the physicists in Innsbruck have now demonstrated how a train of attosecond pulses of polychromatic light could be used to excite a two-level system, which is a basic model system in quantum mechanics.

After a short period of time the system returns to its ground state thereby emitting a light particle that can be detected. “Since we can focus attosecond lasers really well, our new approach may lead to the development of a new technology for nanoscopes,” says an excited Romero-Isart, whose research group also studies topics in the field of nano-optics.

“The light pulse spectrum could range from radiofrequencies to ultraviolet light,” explains Maurer. “The resolution will be determined by the mean wave length of the light.” The duration of the light pulse has to be extremely short, that is in the attosecond range - an attosecond is a billionth of a billionth of a second. The next step for the scientists is to calculate their approach with real molecules to pave the way for developing novel nanoscopes.

Publication: Ultrashort Pulses for Far-Field Nanoscopy. Patrick Maurer, J. Ignacio Cirac, and Oriol Romero-Isart. Phys. Rev. Lett. 117, 103602 – Published 29 August 2016
doi: 10.1103/PhysRevLett.117.103602

Rückfragehinweis:
Oriol Romero-Isart
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
phone: +43 512 507 4730
email: oriol.romero-isart@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.117.103602 - Ultrashort Pulses for Far-Field Nanoscopy. Patrick Maurer, J. Ignacio Cirac, and Oriol Romero-Isart. Phys. Rev. Lett. 117, 103602
http://iqoqi.at/en/group-page-romero-isart - Quantum Nanophysics, Optics and Information, IQOQI

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>