Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrafast laser pulses shed light on elusive superconducting mechanism: U of British Columbia

30.03.2012
International team that includes University of British Columbia physicists has used ultra-fast laser pulses to identify the microscopic interactions that drive high-temperature superconductivity

An international team that includes University of British Columbia physicists has used ultra-fast laser pulses to identify the microscopic interactions that drive high-temperature superconductivity.

In the experiment, to be outlined this Friday in the journal Science, electrons in a prototypical copper-oxide superconductor were excited by extremely short 100-femtosecond (0.0000000000001-second) laser pulses.

As the material's electrons relax back to an equilibrium state, they release their excess energy via deformation of the superconductor's atomic lattice (phonons) or perturbation of its magnetic correlations (spin fluctuations).

The researchers were able to capture very fine grained data on the speed of the relaxation process and its influence on the properties of the superconducting system, showing that the high-critical temperature of these compounds can be accounted for by purely electronic (magnetic) processes.

"This new technique offers us our best window yet on the interactions that govern the formation of these elusive superconducting properties--both across time and across a wide range of characteristic energies," says UBC Associate Professor Andrea Damascelli, Canada Research Chair in Electronic Structure of Solids with the Department of Physics and Astronomy and the UBC Quantum Matter Institute.

"We're now able to begin to disentangle the different interactions that contribute to this fascinating behavior."

Superconductivity--the phenomenon of conducting electricity with no resistance--occurs in some materials at very low temperatures. High-temperature cuprate superconductors are capable of conducting electricity without resistance at temperatures as high as -140 degrees Celsius.

The key mechanism that allows the carriers to flow without resistance in superconductors stems from an effective pairing between electrons. In conventional metallic superconductors, this pairing mechanism is well understood as phonon-mediated. In copper-oxides, the nature of the low-resistance interaction between the electrons has remained a mystery.

"This breakthrough in the understanding of the puzzling properties of copper-oxides paves the way to finally solving the mystery of high-temperature superconductivity and revealing the key knobs for engineering new superconducting materials with even higher transition temperatures," says the paper's lead author Claudio Giannetti, a researcher with Italy's Università Cattolica del Sacro Cuore and visiting professor at UBC's Quantum Matter Institute.

The international collaboration also involved contributions from Japanese, Swiss and American researchers.

The UBC portion of the research program was funded by the Killam Trusts, the Canada Research Chair program, the Sloan Foundation, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research Quantum Materials program.

Andrea Damascelli
Department of Physics & Astronomy
University of British Columbia
P: (604) 822-4551
E: damascelli@physics.ubc.ca
Chris Balma
UBC Faculty of Science
P: (604) 822-5082
E: balma@science.ubc.ca

Andrea Damascelli | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Physics and Astronomy:

nachricht Griffith scientists propose existence and interaction of parallel worlds
30.10.2014 | Griffith University

nachricht Image From Mars-Orbiting Spectrometer Shows Comet’s Coma
29.10.2014 | Johns Hopkins University Applied Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Registration Open Now: 18th International ESAFORM Conference on Material Forming

28.10.2014 | Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

 
Latest News

NIST 'combs' the atmosphere to measure greenhouse gases

30.10.2014 | Earth Sciences

First detailed picture of a cancer-related cell enzyme in action on a chromosome unit

30.10.2014 | Life Sciences

High-intensity sound waves may aid regenerative medicine

30.10.2014 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>