Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold neutrons for science: UCNs will help to solve mysteries of astrophysics

09.06.2011
Mainz has the most powerful source of ultracold neutrons, opening up the possibility of conducting a key experiment to determine the life time of the neutron

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have built what is currently the strongest source of ultracold neutrons. Ultracold neutrons (UCNs) were first generated here five years ago.


View of TRIGA Mainz and its UCN sources at beam tube C and D. photo: Thorsten Lauer / Yuri Sobolev

They are much slower than thermal neutrons and are characterized by the fact that they can be stored in special containers. This property makes them important tools for experiments to investigate why matter dominates over antimatter in our universe and how the lightest elements were created directly after the Big Bang.

"We have commissioned a new UCN source and improved the overall procedure so that we can now generate and store considerably more ultracold neutrons than before and more than anybody else," says Professor Werner Heil of the Institute of Physics at Mainz University. Having so far managed to achieve a density of ten UCN per cubic centimeter, the Mainz research team of chemists and physicists has become one of the global leaders in this research field.

In 2006, the Mainz team, working in cooperation with the Technical University of Munich, produced for the first time ultracold neutrons using the pulsed Mainz TRIGA reactor. Neutrons are created by means of nuclear fission in the TRIGA research reactor in Mainz. These fission neutrons reach speeds up to 30,000 kilometers per second – a tenth of the speed of light. Interaction with light atomic nuclei in the reactor slows them down to a 'thermal' speed of approximately 2,200 meters per second. The apparatus developed by the researchers from Mainz University is then employed: a three meter long tube is inserted in the beam tube of the reactor at the point where there is the highest flux of thermal neutrons. The thermal neutrons undergo extreme velocity deceleration in this tube.

This new source of UCNs in beam tube D of the Mainz TRIGA reactor has just successfully completed its first stress test. In the UCN apparatus the thermal neutrons are slowed down in two in two steps: first with hydrogen and thereafter with an ice block made of deuterium at minus 270 degrees Celsius. "The neutrons are now so slow that we could run after them," says Professor Werner Heil. The UCNs move to the experimental site at the other end of the tube at a speed of only 5 meters per second. The stainless steel tube is coated inside with nickel to ensure that no neutrons are lost on the way.

The key parameter for the scientists is the UCN density that can be achieved at the site of the experiment – a prerequisite to perform high-precision experiments. "In our first trial, we achieved ten UCN per cubic centimeter in a typical storage volume of ten liters. When we use hydrogen as a pre-moderator and make a few minor changes, we expect fifty UCN per cubic centimeter," explain Dr Thorsten Lauer and Dr Yuri Sobolev, who supervise the system. This is more than sufficient to perform experiments such as measurements to determine the life time of the neutron. With this UCN density, the Mainz research team is now the front-runner in the race to achieve the highest storage density, in which facilities in Los Alamos, Grenoble, Munich and the Swiss city of Villigen are competing.

The life time of a neutron – according to current scientific findings – is approximately 885 seconds, but this number is dominated by systematic errors. The method employed is known as "counting the survivors": the number of neutrons left after a certain decay time is correlated with the known initial number in the sample. Till now, for more precise life time measurements not enough ultracold neutrons were available.

UCN research at Johannes Gutenberg University Mainz is part of the "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) Cluster of Excellence, which is currently applying for additional funding in Germany’s Federal Excellence Initiative. The new UCN source was constructed directly on the university campus by the workshops of the Institutes of Physics and Nuclear Chemistry. Over the last three years, seventeen undergraduates, two doctoral candidates and two post-doctoral students have worked on the UCN project – a field that will provide a great deal of scientific insight in the future.

Publications:
A. Frei, Yu. Sobolev, I. Altarev, K. Eberhardt, A. Gschrey, E. Gutsmiedl, R. Hackl, G. Hampel, F.J. Hartmann, W. Heil, J.V. Kratz, Th. Lauer, A. Lizon Aguilar, A.R. Müller, S. Paul, Yu. Pokotilovski, W. Schmid, L. Tassini, D. Tortorella, N. Trautmann, U. Trinks, N. Wiehl: First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A 34 (2007) 119.

I. Altarev, F. Atchison, M. Daum, A. Frei, E. Gutsmiedl, G. Hampel, F.J. Hartmann, W. Heil, A. Knecht, J.V. Kratz, T. Lauer, M. Meier, S. Paul, Y. Sobolev, N. Wiehl: Neutron velocity distribution from a superthermal solid 2H2 ultracold neutron source. Eur. Phys. J. A 37 (2008) 9.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14192.php

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>