Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold neutrons for science: UCNs will help to solve mysteries of astrophysics

09.06.2011
Mainz has the most powerful source of ultracold neutrons, opening up the possibility of conducting a key experiment to determine the life time of the neutron

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have built what is currently the strongest source of ultracold neutrons. Ultracold neutrons (UCNs) were first generated here five years ago.


View of TRIGA Mainz and its UCN sources at beam tube C and D. photo: Thorsten Lauer / Yuri Sobolev

They are much slower than thermal neutrons and are characterized by the fact that they can be stored in special containers. This property makes them important tools for experiments to investigate why matter dominates over antimatter in our universe and how the lightest elements were created directly after the Big Bang.

"We have commissioned a new UCN source and improved the overall procedure so that we can now generate and store considerably more ultracold neutrons than before and more than anybody else," says Professor Werner Heil of the Institute of Physics at Mainz University. Having so far managed to achieve a density of ten UCN per cubic centimeter, the Mainz research team of chemists and physicists has become one of the global leaders in this research field.

In 2006, the Mainz team, working in cooperation with the Technical University of Munich, produced for the first time ultracold neutrons using the pulsed Mainz TRIGA reactor. Neutrons are created by means of nuclear fission in the TRIGA research reactor in Mainz. These fission neutrons reach speeds up to 30,000 kilometers per second – a tenth of the speed of light. Interaction with light atomic nuclei in the reactor slows them down to a 'thermal' speed of approximately 2,200 meters per second. The apparatus developed by the researchers from Mainz University is then employed: a three meter long tube is inserted in the beam tube of the reactor at the point where there is the highest flux of thermal neutrons. The thermal neutrons undergo extreme velocity deceleration in this tube.

This new source of UCNs in beam tube D of the Mainz TRIGA reactor has just successfully completed its first stress test. In the UCN apparatus the thermal neutrons are slowed down in two in two steps: first with hydrogen and thereafter with an ice block made of deuterium at minus 270 degrees Celsius. "The neutrons are now so slow that we could run after them," says Professor Werner Heil. The UCNs move to the experimental site at the other end of the tube at a speed of only 5 meters per second. The stainless steel tube is coated inside with nickel to ensure that no neutrons are lost on the way.

The key parameter for the scientists is the UCN density that can be achieved at the site of the experiment – a prerequisite to perform high-precision experiments. "In our first trial, we achieved ten UCN per cubic centimeter in a typical storage volume of ten liters. When we use hydrogen as a pre-moderator and make a few minor changes, we expect fifty UCN per cubic centimeter," explain Dr Thorsten Lauer and Dr Yuri Sobolev, who supervise the system. This is more than sufficient to perform experiments such as measurements to determine the life time of the neutron. With this UCN density, the Mainz research team is now the front-runner in the race to achieve the highest storage density, in which facilities in Los Alamos, Grenoble, Munich and the Swiss city of Villigen are competing.

The life time of a neutron – according to current scientific findings – is approximately 885 seconds, but this number is dominated by systematic errors. The method employed is known as "counting the survivors": the number of neutrons left after a certain decay time is correlated with the known initial number in the sample. Till now, for more precise life time measurements not enough ultracold neutrons were available.

UCN research at Johannes Gutenberg University Mainz is part of the "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) Cluster of Excellence, which is currently applying for additional funding in Germany’s Federal Excellence Initiative. The new UCN source was constructed directly on the university campus by the workshops of the Institutes of Physics and Nuclear Chemistry. Over the last three years, seventeen undergraduates, two doctoral candidates and two post-doctoral students have worked on the UCN project – a field that will provide a great deal of scientific insight in the future.

Publications:
A. Frei, Yu. Sobolev, I. Altarev, K. Eberhardt, A. Gschrey, E. Gutsmiedl, R. Hackl, G. Hampel, F.J. Hartmann, W. Heil, J.V. Kratz, Th. Lauer, A. Lizon Aguilar, A.R. Müller, S. Paul, Yu. Pokotilovski, W. Schmid, L. Tassini, D. Tortorella, N. Trautmann, U. Trinks, N. Wiehl: First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A 34 (2007) 119.

I. Altarev, F. Atchison, M. Daum, A. Frei, E. Gutsmiedl, G. Hampel, F.J. Hartmann, W. Heil, A. Knecht, J.V. Kratz, T. Lauer, M. Meier, S. Paul, Y. Sobolev, N. Wiehl: Neutron velocity distribution from a superthermal solid 2H2 ultracold neutron source. Eur. Phys. J. A 37 (2008) 9.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14192.php

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>