Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Ultracold' molecules promising for quantum computing, simulation

13.03.2014

Researchers have created a new type of "ultracold" molecule, using lasers to cool atoms nearly to absolute zero and then gluing them together, a technology that might be applied to quantum computing, precise sensors and advanced simulations.

"It sounds counterintuitive, but you can use lasers to take away the kinetic energy, resulting in radical cooling," said Yong P. Chen, an associate professor of physics and electrical and computer engineering at Purdue University.

Physicists are using lasers to achieve such extreme cooling, reducing the temperature to nearly absolute zero, or minus 273 degrees Celsius (minus 459 degrees Fahrenheit) - the lowest temperature possible in the universe.

At these temperatures atoms are brought to a near standstill, making possible new kinds of chemical interactions that are predominantly quantum mechanical in nature. The process is performed inside of an apparatus called a magneto-optical trap, a system that uses a vacuum chamber, magnetic coils and a series of lasers to cool and trap the atoms.

"This is our test tube," said Daniel S. Elliott, a professor of electrical and computer engineering and physics. "In ultracold chemistry, molecules are really moving slowly so they have a long time to interact with each other."

Other researchers have used the method to create cold molecules out of atoms of other alkali metals, which are relatively easy to turn into ultracold molecules. The Purdue researchers are the first to achieve the milestone with the alkali metals lithium and rubidium, in work led by Chen and Elliott.

Findings are detailed in a research paper that appeared as a "Rapid Communication" in the February issue of the journal Physical Review A, a publication of the American Physical Society. The paper was authored by former Purdue physics doctoral student Sourav Dutta, who has graduated; graduate students John Lorenz and Adeel Altaf; Elliott and Chen. The paper is available online at http://pra.aps.org/abstract/PRA/v89/i2/e020702

The method is called photoassociation: two atoms are merged using lasers to induce a chemical bond between them, forming a molecule. These molecules may contain two of the same types of atoms - making them homonuclear - or they can contain two different types of atoms, heteronuclear, such as the case with the lithium-rubidium molecules created by the team.

If the molecules are heteronuclear there is a difference in electric charge between these two atoms and the molecule is said to be polar. This difference in charge is called a dipole moment, which enables interaction between molecules. The greater the dipole moment, the stronger the interaction.

The lithium-rubidium molecule is potentially ideal for various applications, including quantum computing, because it has a significant dipole moment, which can enable these molecules to be used as "quantum bits."

Quantum computers would take advantage of a phenomenon described by quantum theory called "entanglement." Instead of only the states of one and zero used in conventional computer processing, there are many possible "entangled quantum states" in between one and zero, dramatically increasing the capacity to process information.

"In quantum computing the larger the dipole moment the stronger the interaction would be between molecules, and you need that interaction," Elliott said. "They need to interact with each other in order to affect each other, the key to entanglement."

Another potential advantage for the lithium-rubidium molecule is that it can be produced in large quantities.

"The rate of production is much greater for lithium-rubidium than for other bi-alkali-metal molecules," Chen said. "That was a pleasant surprise. It was already known that it has the third- largest dipole moment among bi-alkali-metal molecules, but nobody expected it would be made so efficiently."

Ultracold means temperatures less than about one thousandth of degree above absolute zero. Achieving such frigid extremes requires reducing the kinetic energy of molecules as well as their "internal excitation energies," which are stored in three ways: the rotation of the molecule itself, the vibrations of the atomic nuclei, and the movement of electrons in "shells" surrounding the nuclei. The combined energy of the trio is called rovibronic, a shortened version of rotational, vibrational and electronic.

"We are reporting a highly efficient production of ultracold lithium-rubidium molecules by photoassociation," Dutta said. "This provides the first step towards the production of such ultracold lithium-rubidium molecules in their ground, polar state."

Molecules in their "ground state" have the lowest possible rovibronic energy, which would make them more stable and easier to control.

A related research paper was also published by the team in January in the journal Europhysics Letters, a publication of the European Physical Society. That paper is available online at http://iopscience.iop.org/0295-5075/104/6/63001/article

"Lithium rubidium is one of the last bi-alkali molecules to be made cold, and we are the first to do this," Chen said. "People knew virtually nothing about these molecules."

Ultimately, researchers are seeking more efficient methods for the production of ultracold molecules.

The research has been funded by Purdue's Bilsland Dissertation Fellowship, the National Science Foundation, Army Research Office, and more recently by a research incentive grant from Purdue's Office of Vice President for Research.

The research falls within a field called AMO, for atomic, molecular, and optical physics, an area under expansion at Purdue.

"AMO physics is an exciting area in the landscape of experimental and theoretical physics," Elliott said. "Seven years ago we had one person working in this area."

Since then, the department has added three faculty members working in AMO and is in the process of adding more.

"Purdue is positioned to become a leader in AMO physics," Chen said. 

Writer: Emil Venere, 765-494-4709, venere@purdue.edu 

Sources: Yong Chen, 765-494-0947, yongchen@purdue.edu

Daniel S. Elliott, 765-494-3442, elliottd@ecn.purdue.edu 

ABSTRACT

Photoassociation of ultracold LiRb∗ molecules: Observation of high efficiency  and unitarity-limited rate saturation

Sourav Dutta,1 , * John Lorenz,1 Adeel Altaf,1 , D. S. Elliott,1, 2 and Yong P. Chen 1, 2

1 Department of Physics, Purdue University

2 School of Electrical and Computer Engineering, Purdue University

We report the production of ultracold heteronuclear 7 Li85 Rb molecules in excited electronic states by photoassociation (PA) of ultracold 7 Li and 85 Rb atoms. PA is performed in a dual-species 7 Li-85 Rb magneto-optical trap (MOT) and the PA resonances are detected using trap loss spectroscopy. We identify several strong PA resonances below the Li (2s 2 S1/2) + Rb (5p 2 P3/2) asymptote and experimentally determine the long range C6 dispersion coefficients. We find a molecule formation rate (PLiRb) of 3.5 × 10 7 s−1 and a PA rate coefficient (KPA) of 1.3 × 10−10 cm3 /s, the highest among heteronuclear bi-alkali-metal molecules. At large PA laser intensity we observe the saturation of the PA rate coefficient (KPA) close to the theoretical value at the unitarity limit. 

Emil Venere | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>