Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Ultracold' molecules promising for quantum computing, simulation

13.03.2014

Researchers have created a new type of "ultracold" molecule, using lasers to cool atoms nearly to absolute zero and then gluing them together, a technology that might be applied to quantum computing, precise sensors and advanced simulations.

"It sounds counterintuitive, but you can use lasers to take away the kinetic energy, resulting in radical cooling," said Yong P. Chen, an associate professor of physics and electrical and computer engineering at Purdue University.

Physicists are using lasers to achieve such extreme cooling, reducing the temperature to nearly absolute zero, or minus 273 degrees Celsius (minus 459 degrees Fahrenheit) - the lowest temperature possible in the universe.

At these temperatures atoms are brought to a near standstill, making possible new kinds of chemical interactions that are predominantly quantum mechanical in nature. The process is performed inside of an apparatus called a magneto-optical trap, a system that uses a vacuum chamber, magnetic coils and a series of lasers to cool and trap the atoms.

"This is our test tube," said Daniel S. Elliott, a professor of electrical and computer engineering and physics. "In ultracold chemistry, molecules are really moving slowly so they have a long time to interact with each other."

Other researchers have used the method to create cold molecules out of atoms of other alkali metals, which are relatively easy to turn into ultracold molecules. The Purdue researchers are the first to achieve the milestone with the alkali metals lithium and rubidium, in work led by Chen and Elliott.

Findings are detailed in a research paper that appeared as a "Rapid Communication" in the February issue of the journal Physical Review A, a publication of the American Physical Society. The paper was authored by former Purdue physics doctoral student Sourav Dutta, who has graduated; graduate students John Lorenz and Adeel Altaf; Elliott and Chen. The paper is available online at http://pra.aps.org/abstract/PRA/v89/i2/e020702

The method is called photoassociation: two atoms are merged using lasers to induce a chemical bond between them, forming a molecule. These molecules may contain two of the same types of atoms - making them homonuclear - or they can contain two different types of atoms, heteronuclear, such as the case with the lithium-rubidium molecules created by the team.

If the molecules are heteronuclear there is a difference in electric charge between these two atoms and the molecule is said to be polar. This difference in charge is called a dipole moment, which enables interaction between molecules. The greater the dipole moment, the stronger the interaction.

The lithium-rubidium molecule is potentially ideal for various applications, including quantum computing, because it has a significant dipole moment, which can enable these molecules to be used as "quantum bits."

Quantum computers would take advantage of a phenomenon described by quantum theory called "entanglement." Instead of only the states of one and zero used in conventional computer processing, there are many possible "entangled quantum states" in between one and zero, dramatically increasing the capacity to process information.

"In quantum computing the larger the dipole moment the stronger the interaction would be between molecules, and you need that interaction," Elliott said. "They need to interact with each other in order to affect each other, the key to entanglement."

Another potential advantage for the lithium-rubidium molecule is that it can be produced in large quantities.

"The rate of production is much greater for lithium-rubidium than for other bi-alkali-metal molecules," Chen said. "That was a pleasant surprise. It was already known that it has the third- largest dipole moment among bi-alkali-metal molecules, but nobody expected it would be made so efficiently."

Ultracold means temperatures less than about one thousandth of degree above absolute zero. Achieving such frigid extremes requires reducing the kinetic energy of molecules as well as their "internal excitation energies," which are stored in three ways: the rotation of the molecule itself, the vibrations of the atomic nuclei, and the movement of electrons in "shells" surrounding the nuclei. The combined energy of the trio is called rovibronic, a shortened version of rotational, vibrational and electronic.

"We are reporting a highly efficient production of ultracold lithium-rubidium molecules by photoassociation," Dutta said. "This provides the first step towards the production of such ultracold lithium-rubidium molecules in their ground, polar state."

Molecules in their "ground state" have the lowest possible rovibronic energy, which would make them more stable and easier to control.

A related research paper was also published by the team in January in the journal Europhysics Letters, a publication of the European Physical Society. That paper is available online at http://iopscience.iop.org/0295-5075/104/6/63001/article

"Lithium rubidium is one of the last bi-alkali molecules to be made cold, and we are the first to do this," Chen said. "People knew virtually nothing about these molecules."

Ultimately, researchers are seeking more efficient methods for the production of ultracold molecules.

The research has been funded by Purdue's Bilsland Dissertation Fellowship, the National Science Foundation, Army Research Office, and more recently by a research incentive grant from Purdue's Office of Vice President for Research.

The research falls within a field called AMO, for atomic, molecular, and optical physics, an area under expansion at Purdue.

"AMO physics is an exciting area in the landscape of experimental and theoretical physics," Elliott said. "Seven years ago we had one person working in this area."

Since then, the department has added three faculty members working in AMO and is in the process of adding more.

"Purdue is positioned to become a leader in AMO physics," Chen said. 

Writer: Emil Venere, 765-494-4709, venere@purdue.edu 

Sources: Yong Chen, 765-494-0947, yongchen@purdue.edu

Daniel S. Elliott, 765-494-3442, elliottd@ecn.purdue.edu 

ABSTRACT

Photoassociation of ultracold LiRb∗ molecules: Observation of high efficiency  and unitarity-limited rate saturation

Sourav Dutta,1 , * John Lorenz,1 Adeel Altaf,1 , D. S. Elliott,1, 2 and Yong P. Chen 1, 2

1 Department of Physics, Purdue University

2 School of Electrical and Computer Engineering, Purdue University

We report the production of ultracold heteronuclear 7 Li85 Rb molecules in excited electronic states by photoassociation (PA) of ultracold 7 Li and 85 Rb atoms. PA is performed in a dual-species 7 Li-85 Rb magneto-optical trap (MOT) and the PA resonances are detected using trap loss spectroscopy. We identify several strong PA resonances below the Li (2s 2 S1/2) + Rb (5p 2 P3/2) asymptote and experimentally determine the long range C6 dispersion coefficients. We find a molecule formation rate (PLiRb) of 3.5 × 10 7 s−1 and a PA rate coefficient (KPA) of 1.3 × 10−10 cm3 /s, the highest among heteronuclear bi-alkali-metal molecules. At large PA laser intensity we observe the saturation of the PA rate coefficient (KPA) close to the theoretical value at the unitarity limit. 

Emil Venere | EurekAlert!

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>