Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold gas mimics ultrahot plasma

17.02.2009
Duke and Brookhaven examine free-flowing 'exploding cigars'

Several years after Duke University researchers announced spectacular behavior of a low density ultracold gas cloud, researchers at Brookhaven National Laboratory have observed strikingly similar properties in a very hot and dense plasma "fluid" created to simulate conditions when the universe was about one millionths of a second old.

The plasma was formed at a colossal 2 million degrees Kelvin temperatures within Brookhaven's Relativistic Heavy Ion Collider (RHIC). The gas cloud was cooled to only .1 millionths of a degree Kelvin temperatures using a laser light "trap" and magnetic field at Duke. But both drastically different systems expanded something like exploding cigars. And their constituent matter also showed signs of flowing almost free of any viscosity -- a "nearly perfect" fluid, said Duke physics professor John Thomas.

"There's about 19 orders of magnitude difference in temperature and about 25 orders of magnitude difference in density, but the commonality of both is almost zero viscosity flow," said Thomas.

Thomas will report on his laboratory's experiments with "fermion" gases and their possible relevance to RHIC's "quark-gluon plasma" research as well as to string theory during a Sunday, Feb. 15 symposium organized by Brookhaven during the American Association of Science's 2009 Annual meeting, to be held in Chicago.

In a November, 2002 report in the research journal Science, Thomas and co-researchers described what happened after they confined a cloud of lithium-6 atoms and cooled them to 100 billionths of a degree above absolute zero. When the ultracooled, cigar-shaped cloud was then released from the trap, it expanded "anisotropically," meaning "fastest along the direction that was initially narrow," he recalled.

Lithium atoms are of the fermion class, meaning that that their spin-states normally make them keep more of a distance from each other than their chummier counterpart class of atoms -- the bosons. But under the extreme conditions of his experiments, even fermions find ways to collide to form what are called "strong interactions," he said.

Brookhaven's RHIC is designed to smash gold atoms together near the speed of light. Its goal is to create energies colossal enough to break apart their nuclei into an ultrahot gas of the most fundamental particles, "naked" quarks and gluons. Theoreticians believe such a "quark-gluon plasma" has not existed since a split-second after the Big Bang.

As the results of those experiments began to surface in April, 2005, RHIC experimenters found that "the cigar shaped plasma looked very much like the cigar- shaped cloud in our trap," Thomas said. That cloud also expanded anisotropically in keeping with what theorists in the field had predicted. Researchers also found that this plasma behaved as an almost-perfect fluid. Meanwhile, further work by Thomas's group has documented almost viscosity-free fluid states in its cold fermion gases.

Thomas noted that quarks themselves are also fermions. "So there's quite a broad overlap, and a genuine common interest in these two patterns. We don't have exactly the same system as at RHIC. But in a broad sense there are similarities that could be exploited to get some insight."

Meanwhile, researchers involved in string theory have also approached Thomas about similarities between his fermion findings and the predicted behavior of what those theorists call "strongly interacting quantum fields," he said. "It's not clear, though, that the prediction has any relevance to Fermi atoms colliding in a trap. However, the closeness of the initial cold gas measurements to the predictions is striking."

Elements of string theory aim at bridging the gap between quantum mechanics and general relativity by proposing that the true fundamental particles are actually ultra-tiny strings vibrating in multiple dimensions.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>