Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultracold atoms in a "Rydberg-dress"


Scientists at the MPQ (Garching) and MPIPKS (Dresden) have developed a novel technique to let atoms interact over large distances.

Many properties of our everyday world can be explained if atoms are thought of as small, solid marbles, which feel each other only if brought in direct contact with each other. The temperature of the air surrounding us, for example, is the result of uncountable, continuously occurring collisions between its constituents.

Fig. 1: From the starting state densely filled with atoms (left), a ring-like structure emerges due to the long range interaction (right).

Graphic: MPQ, Quantum Many-Body Systems Division

Fig. 2: The type of interaction can be controlled by light, from angularly independent (left and middle) to angularly dependent interaction (right).

Graphic: MPQ, Quantum Many-Body Systems Division

Contrary to this, we also know effects which arise from the interplay between two distant objects. Well-known examples are two magnets which can affect each other also at quite a distance, or the formation of a salt crystal as a regular arrangement of positively charged sodium and negatively charged chlorine ions, which are bound together at large distances by electrical attraction.

In the microscopic quantum world, such interactions at a distance are of special interest, as on the one hand they are the origin of foundational, well known phenomena such as the formation of ordered crystals. On the other hand they also promise to allow for experimentally studying novel and up to now unknown states of matter. Moreover, such long-range interacting systems are hard to treat theoretically on a fundamental level, attaching special value to experimental studies.

Now, a team of researchers around Dr. Christian Groß and Prof. Immanuel Bloch (MPQ Garching) in collaboration with Dr. Thomas Pohl (MPIPKS Dresden) has developed a novel method to let atoms interact over a large distance (Nature Physics, 1 August 2016). The key element thereby is the so called “Rydberg-dressing”, which makes use of a fundamental property of quantum mechanics, namely the fact that a quantum object can be in a superposition of two states at the same time. To illustrate this phenomenon, one often quotes the famous “Schrödinger’s cat”, devised by the theoretical physicist Erwin Schrödinger, which is held in a closed box in a superposition of the states “dead” and “alive”.

In analogy, in the experiment atoms are brought into a superposition of two states. “The trick consists of choosing a highly excited “Rydberg-state” next to the energetically lowest lying ground state”, explains Johannes Zeiher, doctoral candidate at the experiment. “These exotic states are characterized by a 1000-fold increased diameter. Therefore, Rydberg atoms can influence each other at enormous distances.” The catch, however, is that Rydberg-atoms are unstable and decay within a very short time. The scientists take this hurdle by choosing a very unequal superposition, in which the atoms are in the unstable Rydberg state only with a small probability. “To some extent, each atom only obtains a very thin “Rydberg-dress”, which nevertheless can be experienced by other, distant atoms”, elucidates Christian Groß, leader of the experiment.

In the laboratory, the physicists start the experiment by creating an ultracold gas of the alkali metal rubidium-87 with the aid of the technique of laser-cooling. From this gas, approximately 200 atoms are transferred to a so called optical lattice, a periodic arrangement of microscopic light traps, which are formed by several laser beams. Within a single plane, each of these microscopic traps is dimensioned such that it can hold precisely one atom. The resulting order of the atoms is a well-controlled starting state for the next, decisive step: the implementation of “Rydberg-dressing” by shining in very intense, ultraviolet laser light. In this light-woven “Rydberg-dress”, the atoms started feeling and affecting each other at a distance, similar to two magnets repelling or attracting each other at a much larger scale in our macroscopic world. A crucial difference is, however, that in the microscopic system this interaction can be switched on and off by controlling the ultraviolet light.

To provide the proof for the so generated long range interactions, the experimentalist chose an interferometric technique which allows for an especially sensitive probe of the system. To this end, the “dressed atoms”, for which the ground state is superposed with the Rydberg state, are compared to usual atoms. The mutual attraction or repulsion of the Rydberg atoms leaves characteristic footprints in the interference pattern arising from this comparison. These can be detected by imaging the atoms one by one with the aid of a specialized fluorescence microscope.

A first measurement provided direct evidence that the atoms feel each other at large distances. As a consequence, the behaviour of each atom is also influenced by its neighbours. Figure 1 shows both the initial distribution of about 200 atoms, which homogeneously occupy a disc shaped area, as well as the resulting interference pattern for the atoms in superposition with the Rydberg state. The edge of the system stands out as a ring-like structure, as the atoms there lack their neighbours at the outside.

A deeper analysis of the structures in the interference pattern allowed for a more precise measurement and characterization of the interaction. The experiments confirm with excellent accuracy the theoretical predictions. A particularly interesting feature is the possibility to create angularly dependent interactions (Figure 2). This means that two atoms lying next to each other feel each other differently depending on whether they follow each other from left to right or orthogonal to this direction.

“This phenomenon also can be observed with two magnets, which repel or attract each other with different strength, depending on whether they are arranged next to each other or before each other”, says Christian Groß. Contrary to this, the interaction underlying the crystal formation of sodium and chlorine ions is independent of the angle. Also this more simple type of interaction could be realized in the lab, controlled by the ultraviolet laser (Figure 2).

The research teams around Immanuel Bloch, Christian Groß and Thomas Pohl succeeded in inducing and characterizing a novel form of interaction between two atoms. Control over this interaction with the aid of light opens the path to study microscopic systems, in which atoms act like small magnets and interact over large distances. Such systems promise studies of a large variety of exciting phenomena, for example of the thus far not experimentally observed “Super-solid”, which is a state of matter that is a solid and a fluid at the same time. [JZ/OM]

Original publication:
Johannes Zeiher, Rick van Bijnen, Peter Schauß, Sebastian Hild, Jae-yoon Choi, Thomas Pohl, Immanuel Bloch, and Christian Groß
Many-body interferometry of a Rydberg-dressed spin lattice
Nature Physics, 1. August 2016, DOI: 10.1038/NPHYS3835


Dr. Christian Groß
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 32 905 - 713

Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU Munich
Schellingstr. 4, 80799 Munich
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -138

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -213

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>



Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

More VideoLinks >>>