Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-thin Detector Captures Unprecedented Range of Light

08.09.2014

New research at the University of Maryland could lead to a generation of light detectors that can see below the surface of bodies, walls, and other objects.

Using the special properties of graphene, a two-dimensional form of carbon that is only one atom thick, a prototype detector is able to see an extraordinarily broad band of wavelengths. Included in this range is a band of light wavelengths that have exciting potential applications but are notoriously difficult to detect: terahertz waves, which are invisible to the human eye.

A research paper about the new detector was published online Sept. 7, 2014 in the journal Nature Nanotechnology. Lead author Xinghan Cai, a UMD physics graduate student, said a detector like the researchers’ prototype “could find applications in emerging terahertz fields such as mobile communications, medical imaging, chemical sensing, night vision and security.”

The light we see illuminating everyday objects is actually only a very narrow band of wavelengths and frequencies. Terahertz light waves’ long wavelengths and low frequencies fall between microwaves and infrared waves. The light in these terahertz wavelengths can pass through materials that we normally think of as opaque, such as skin, plastics, clothing and cardboard. It can also be used to identify chemical signatures that are emitted only in the terahertz range.

Few technological applications for terahertz detection are currently realized, however, in part because it is difficult to detect light waves in this range. In order to maintain sensitivity, most detectors need to be kept extremely cold, around 4 Kelvin, or -452 degrees Fahrenheit. Existing detectors that work at room temperature are bulky, slow and prohibitively expensive.

The new room temperature detector, developed by the UMD team and colleagues at the U.S. Naval Research Lab and Monash University, Australia, gets around these problems by using graphene, a single layer of interconnected carbon atoms. By utilizing the special properties of graphene, the research team has been able to increase the speed and maintain the sensitivity of room temperature wave detection in the terahertz range.

Using a new operating principle called the “hot-electron photothermoelectric effect,” the research team created a device that is “as sensitive as any existing room temperature detector in the terahertz range and more than a million times faster,” says Michael Fuhrer, professor of physics at UMD and Monash University.

Graphene, a sheet of pure carbon only one atom thick, is uniquely suited to use in a terahertz detector because when light is absorbed by the electrons suspended in the honeycomb lattice of the graphene, they do not lose their heat to the lattice but instead retain that energy.

The concept behind the detector is simple, says UMD Physics Professor Dennis Drew. “Light is absorbed by the electrons in graphene, which heat up but don’t lose their energy easily. So they remain hot while the carbon atomic lattice remains cold.” These heated electrons escape the graphene through electrical leads, much like steam escaping a tea kettle. The prototype uses two electrical leads made of different metals, which conduct electrons at different rates. Because of this conductivity difference, more electrons will escape through one than the other, producing an electrical signal.

This electrical signal detects the presence of terahertz waves beneath the surface of materials that appear opaque to the human eye--or even X-rays. You cannot see through your skin, for example, and an X-ray goes right through the skin to the bone, missing the layers just beneath the skin’s surface entirely. Terahertz waves see the in-between. The speed and sensitivity of the room temperature detector presented in this research opens the door to future discoveries in this in-between zone.

This research was supported by the U.S. Office of Naval Research (Award Nos. N00014911064, N000141310712, N00014441310865), the National Science Foundation (Award No. ECCS 1309750) and the Intelligence Advanced Research Projects Activity. The content of this article does not necessarily reflect the views of these organizations.

Dennis Drew Lab
Michael Fuhrer Lab
Thomas Murphy Lab

The research paper, “Sensitive Room-Temperature Terahertz Detection via Photothermoelectric Effect in Graphene,” Xinghan Cai, Andrei B. Sushkov, Ryan J. Suess, Mohammad M. Jadidi, Gregory S. Jenkins, Luke O. Nyakiti, Rachael L. Myers-Ward, Jun Yan, Shanshan Li, D. Kurt Gaskill, Thomas E. Murphy, H. Dennis Drew, and Michael S. Fuhrer, was published Sept. 7, 2014 in Nature Nanotechnology.

Media Relations Contact: Heather Dewar, 301-405-9267, hdewar@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, Md. 20742
www.cmns.umd.edu
@UMDScience

About the College of Computer, Mathematical, and Natural Sciences
The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college’s 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Kathryn Tracey | Eurek Alert!
Further information:
http://cmns.umd.edu/news-events/features/2441

Further reports about: Computer Nanotechnology Sciences Terahertz detector energy graphene lattice skin temperature waves

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>