Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-thin Detector Captures Unprecedented Range of Light

08.09.2014

New research at the University of Maryland could lead to a generation of light detectors that can see below the surface of bodies, walls, and other objects.

Using the special properties of graphene, a two-dimensional form of carbon that is only one atom thick, a prototype detector is able to see an extraordinarily broad band of wavelengths. Included in this range is a band of light wavelengths that have exciting potential applications but are notoriously difficult to detect: terahertz waves, which are invisible to the human eye.

A research paper about the new detector was published online Sept. 7, 2014 in the journal Nature Nanotechnology. Lead author Xinghan Cai, a UMD physics graduate student, said a detector like the researchers’ prototype “could find applications in emerging terahertz fields such as mobile communications, medical imaging, chemical sensing, night vision and security.”

The light we see illuminating everyday objects is actually only a very narrow band of wavelengths and frequencies. Terahertz light waves’ long wavelengths and low frequencies fall between microwaves and infrared waves. The light in these terahertz wavelengths can pass through materials that we normally think of as opaque, such as skin, plastics, clothing and cardboard. It can also be used to identify chemical signatures that are emitted only in the terahertz range.

Few technological applications for terahertz detection are currently realized, however, in part because it is difficult to detect light waves in this range. In order to maintain sensitivity, most detectors need to be kept extremely cold, around 4 Kelvin, or -452 degrees Fahrenheit. Existing detectors that work at room temperature are bulky, slow and prohibitively expensive.

The new room temperature detector, developed by the UMD team and colleagues at the U.S. Naval Research Lab and Monash University, Australia, gets around these problems by using graphene, a single layer of interconnected carbon atoms. By utilizing the special properties of graphene, the research team has been able to increase the speed and maintain the sensitivity of room temperature wave detection in the terahertz range.

Using a new operating principle called the “hot-electron photothermoelectric effect,” the research team created a device that is “as sensitive as any existing room temperature detector in the terahertz range and more than a million times faster,” says Michael Fuhrer, professor of physics at UMD and Monash University.

Graphene, a sheet of pure carbon only one atom thick, is uniquely suited to use in a terahertz detector because when light is absorbed by the electrons suspended in the honeycomb lattice of the graphene, they do not lose their heat to the lattice but instead retain that energy.

The concept behind the detector is simple, says UMD Physics Professor Dennis Drew. “Light is absorbed by the electrons in graphene, which heat up but don’t lose their energy easily. So they remain hot while the carbon atomic lattice remains cold.” These heated electrons escape the graphene through electrical leads, much like steam escaping a tea kettle. The prototype uses two electrical leads made of different metals, which conduct electrons at different rates. Because of this conductivity difference, more electrons will escape through one than the other, producing an electrical signal.

This electrical signal detects the presence of terahertz waves beneath the surface of materials that appear opaque to the human eye--or even X-rays. You cannot see through your skin, for example, and an X-ray goes right through the skin to the bone, missing the layers just beneath the skin’s surface entirely. Terahertz waves see the in-between. The speed and sensitivity of the room temperature detector presented in this research opens the door to future discoveries in this in-between zone.

This research was supported by the U.S. Office of Naval Research (Award Nos. N00014911064, N000141310712, N00014441310865), the National Science Foundation (Award No. ECCS 1309750) and the Intelligence Advanced Research Projects Activity. The content of this article does not necessarily reflect the views of these organizations.

Dennis Drew Lab
Michael Fuhrer Lab
Thomas Murphy Lab

The research paper, “Sensitive Room-Temperature Terahertz Detection via Photothermoelectric Effect in Graphene,” Xinghan Cai, Andrei B. Sushkov, Ryan J. Suess, Mohammad M. Jadidi, Gregory S. Jenkins, Luke O. Nyakiti, Rachael L. Myers-Ward, Jun Yan, Shanshan Li, D. Kurt Gaskill, Thomas E. Murphy, H. Dennis Drew, and Michael S. Fuhrer, was published Sept. 7, 2014 in Nature Nanotechnology.

Media Relations Contact: Heather Dewar, 301-405-9267, hdewar@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, Md. 20742
www.cmns.umd.edu
@UMDScience

About the College of Computer, Mathematical, and Natural Sciences
The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college’s 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Kathryn Tracey | Eurek Alert!
Further information:
http://cmns.umd.edu/news-events/features/2441

Further reports about: Computer Nanotechnology Sciences Terahertz detector energy graphene lattice skin temperature waves

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>