Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-short X-ray pulses explore the nano world

25.11.2014

Characterization of X-ray flashes open new perspectives in X-ray science

Ultra-short and extremely strong X-ray flashes, as produced by free-electron lasers, are opening the door to a hitherto unknown world. Scientists are using these flashes to take “snapshots” of the geometry of tiniest structures, for example the arrangement of atoms in molecules.


Undulator hall at the Linac Coherent Light Source of SLAC

Photo: SLAC National Accelerator Center

To improve not only spatial but also temporal resolution further requires knowledge about the precise duration and intensity of the X-ray flashes. An international team of scientists has now tackled this challenge.

X-ray flashes are a unique scientific tool. They are generated by accelerating electrons to very high energy levels in kilometer-long vacuum tubes, so-called linear accelerators, and then deflecting them with specially arranged magnets. In the process the particles emit X-ray radiation that is amplified until an ultra-short and intensive X-ray flash is released.

Researchers use these X-ray flashes to resolve structures as small as one ten billionth of a meter (0.1 nanometer) in size. That is roughly the diameter of a hydrogen atom. In this way, biomolecules, for example, can be imaged at extremely high resolution, providing new insight into the nano cosmos of nature.

Using two quickly sequenced flashes the researchers can even obtain information on structural changes during reactions. The first laser flash triggers a reaction while the second measures structural changes during the reaction. For this it is essential to know the precise duration and temporal intensity distribution of the X-ray flashes. However, hitherto it has not been possible to measure the ultra-short pulses directly.

Researchers at the Technische Universität München (TUM), the Hamburg Center for Free-Electron Laser Science (CFEL) and the Max Planck Institute of Quantum Optics (MPQ) in Garching, in collaboration with other colleagues, have now developed just such a methodology. The respective experiments were done at the SLAC National Accelerator Laboratory in California (USA) by a team headed by Professor Reinhard Kienberger, Dr. Wolfram Helml (TUM) and Dr. Andreas Maier (CFEL).

The scientists determined the duration of the X-ray flashes by modifying a process originally developed to measure ultra-short flashes of light. The physicists directed the X-ray flashes into a vacuum chamber filled with a few atoms of an inert gas. There they superimposed the flashes with 2.4 micrometer wavelength pulses of infrared light.

When the X-ray flashes hit a gas atom they knock electrons out of the innermost shell, setting them free. After being liberated the electrons are accelerated or decelerated by the electrical field of the infrared light pulse. The change in an electron’s velocity is a function of when the light intercepts the electron, and thus of the electrical field strength at the moment of ionization.

Since electrons are set free during the full duration of an X-ray flash, electrons emitted at different points in time “feel” different field strengths of the periodically oscillating infrared light. As a result they are accelerated at varying rates. The physicists can then calculate the duration of the original X-ray flash from the different arrival times of the electrons in a detector.

Using this approach, the researchers determined that the average pulse duration doesn’t exceed four and a half femtoseconds – a femtosecond is a millionth of a billionth of a second (10-15 seconds). In addition, the researchers obtained insight into the structure of the X-ray flashes.

A characteristic of the intense X-ray flashes generated in free-electron lasers is their randomly changing pulse form. A typical X-ray pulse comprises multiple contiguous shorter “X-ray spikes.” The number and intensity of these spikes varies from one shot to the next.

For the first time ever, the researchers managed to measure these ultra-short sub-peaks directly and confirm predictions that the individual flashes last only around 800 attoseconds – an attosecond is a billionth of a billionth of a second (10-18 seconds). The new methodology allows the detailed, direct temporal measurement of X-ray pulses and augments methodologies for determining pulse shape and length indirectly from the structure of the electron packets used to generate the flashes.

The enhanced X-ray pulse measurement technology may also find application at the new Center for Advanced Laser Applications (CALA) at the Garching campus. Researchers there are working on, among other things, generating even shorter X-ray pulses using high-energy lasers. Pulses with a duration of only a few attoseconds, would allow researchers to take “snapshots” of even faster processes in nature, like the movement of electrons around atomic nuclei.

However, X-ray flashes provide not only basic research with new perspectives. Medicine could also profit from the technology. “Ultra-short laser-like X-ray pluses serve not only the investigation of the fastest physical processes at the core of matter, but could, because of their extremely high intensity, also be used to destroy tumors following X-ray diagnosis,” explains Reinhard Kienberger, professor for laser and X-ray physics at TU München and leader of the research consortium.

The research was funded by the German Research Foundation (Excellence Cluster Munich – Center for Advanced Photonics, MAP), the Bavaria California Technology Center (BaCaTec), the International Max Planck Research School on Advanced Photon Science (IMPRS), a Marie Curie International Outgoing Fellowship, the US Department of Energy, the National Science Foundation (USA), the Science Foundation Ireland (SFI) and the European Research Council (ERC Starting Grant). CFEL is a collaboration facility of the Deutsches Elektronen Synchrotron (DESY), the University of Hamburg and the Max Planck Society. CALA is a joint research facility of Technische Universität München and Ludwig-Maximilians-Universität München.

Publication:

W. Helml, A. R. Maier, W. Schweinberger, I. Grguraš, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri & R. Kienberger
Measuring the temporal structure of few-femtosecond FEL X-ray pulses directly in the time domain
Nature Photonics online, 24. November 2014, Doi: 10.1038/NPHOTON.2014.278

Contact:

Prof. Dr. Reinhard Kienberger
Technische Universität München
Chair for Laser and X-Ray Physics, E11
James Frank Str., 85748 Garching, Germany
Tel.: +49 89 289 12840 – E-mail: reinhard.kienberger@tum.de
Internet: www.e11.ph.tum.de

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de/en/about-tum/news/press-releases/short/article/31913/

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>