Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-powerful Laser Makes Silicon Pump Liquid Uphill with No Added Energy

17.03.2010
Researchers at the University of Rochester's Institute of Optics have discovered a way to make liquid flow vertically upward along a silicon surface, overcoming the pull of gravity, without pumps or other mechanical devices.

In a paper in the journal Optics Express, professor Chunlei Guo and his assistant Anatoliy Vorobyev demonstrate that by carving intricate patterns in silicon with extremely short, high-powered laser bursts, they can get liquid to climb to the top of a silicon chip like it was being sucked through a straw.

Unlike a straw, though, there is no outside pressure pushing the liquid up; it rises on its own accord. By creating nanometer-scale structures in silicon, Guo greatly increases the attraction that water molecules feel toward it. The attraction, or hydrophile, of the silicon becomes so great, in fact, that it overcomes the strong bond that water molecules feel for other water molecules.

Thus, instead of sticking to each other, the water molecules climb over one another for a chance to be next to the silicon. (This might seem like getting energy for free, but even though the water rises, thus gaining potential energy, the chemical bonds holding the water to the silicon require a lower energy than the ones holding the water molecules to other water molecules.) The water rushes up the surface at speeds of 3.5 cm per second.

Yet the laser incisions are so precise and nondestructive that the surface feels smooth and unaltered to the touch.

In a paper a few months ago in the journal Applied Physics Letters, the same researchers proved that the phenomenon was possible with metal, but extending it to silicon could have some important implications. For instance, Guo said, this work could pave the way for novel cooling systems for computers that operate much more effectively, elegantly, and efficiently than currently available options.

"Heat is definitely the number one problem deterring the design of faster conventional processors," said Michael Scott, a professor of computer science at the University, who is not involved in this research.

Computer chips are essentially wafers of silicon covered with billions of microscopic transistors that communicate by sending electrical signals through metal wires that connect them. As technological innovations make it possible to pack astounding numbers of transistors on small pieces of silicon, computer processing speeds could increase substantially; however, the electrical current constantly surging through the chips creates a lot of heat, Scott said. If left unchecked, the heat can melt or otherwise destroy the chip components.

Most computers these days are cooled with fans. Essentially, the air around the circuit components absorbs the heat that is generated and the fan blows that hot air away from the components. The disadvantages of this method are that cold air cannot absorb very much heat before becoming hot, making fans ineffective for faster processors, and fans are noisy.

For these reasons, many companies have been eager to investigate the possibility of using liquid as a coolant instead of air. Liquids can absorb far more heat, and transmit heat much more effectively than air. So far, designers have not created liquid cooling systems that are cost-effective and energy efficient enough to become widely used in economical personal computers. Although Guo's discovery has not yet been incorporated into a prototype, he thinks that silicon that can pump its own coolant has the potential to contribute greatly to the design of future cooling systems.

Contact: Alan Blank
alan.blank@rochester.edu
585-275-2671

Alan Blank | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>