Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra high sensitivity magnetic field sensors: The attraction of magnonic crystals

19.09.2011
Highly sensitivity devices for the measurement of weak magnetic fields are important in medicine for applications such as monitoring heart and brain activities. Furthermore, mapping the distributions and magnitudes of weak magnetic fields can provide a deeper insight into neuroscience and brain-machine interfaces.

Here, Mitsuteru Inoue and colleagues at Toyohashi University of Technology demonstrate that magnonic crystals—artificial magnetic crystal structures for controlling the propagation of magnetostatic waves—exhibit properties enabling the fabrication of extremely sensitive magnetic field sensors operable at room temperature.

Magnonic crystals support the propagation of magnetostatic waves through the crystal spin system or suppress the propagation of waves due to the periodicity of the crystal structure. In this research the Toyohashi Tech researchers fabricated magnonic crystals by the direct formation of one-dimensional arrays of metal strips on top of yttrium iron garnet, which serves as the propagation medium.

The metal stripes induced an attenuation band in the frequency spectra of the magnonic crystal, and the propagation of waves with the corresponding frequencies was strictly prohibited.

The frequency of the attenuation band was very sensitive to an external magnetic field applied to the crystal, where a 1 Oe change in the field resulted in a 2.6 MHz shift in the band gap. The maximum detection sensitivity of the magnonic crystals was more than 10 times greater that of a giant magneto-impedance element.

The next challenge for the researchers is to demonstrate the measurement of magnetic fields in three dimensions, which is possible using two-dimensional magnonic crystals.

Reference:
Mitsuteru Inoue, Alexander Baryshev, Hiroyuki Takagi, Pang Boey Lim, Kohei Hatafuku, Josho Noda, and Kenji TogoInvestigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperatureApplied Physics Letters 98, 132511 (2011)DOI: 10.1063/1.3567940Department of Electrical and Electronic Engineering, Toyohashi University of Technology, JapanDepartment website: Inoue Lab: http://www.maglab.eee.tut.ac.jp/eng-index.html

Mitsuteru Inoue | Toyohashi University
Further information:
http://www.tut.ac.jp/english/newsletter/research_highlights/research01.html
http://www.maglab.eee.tut.ac.jp/eng-index.html

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>