Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra high sensitivity magnetic field sensors: The attraction of magnonic crystals

19.09.2011
Highly sensitivity devices for the measurement of weak magnetic fields are important in medicine for applications such as monitoring heart and brain activities. Furthermore, mapping the distributions and magnitudes of weak magnetic fields can provide a deeper insight into neuroscience and brain-machine interfaces.

Here, Mitsuteru Inoue and colleagues at Toyohashi University of Technology demonstrate that magnonic crystals—artificial magnetic crystal structures for controlling the propagation of magnetostatic waves—exhibit properties enabling the fabrication of extremely sensitive magnetic field sensors operable at room temperature.

Magnonic crystals support the propagation of magnetostatic waves through the crystal spin system or suppress the propagation of waves due to the periodicity of the crystal structure. In this research the Toyohashi Tech researchers fabricated magnonic crystals by the direct formation of one-dimensional arrays of metal strips on top of yttrium iron garnet, which serves as the propagation medium.

The metal stripes induced an attenuation band in the frequency spectra of the magnonic crystal, and the propagation of waves with the corresponding frequencies was strictly prohibited.

The frequency of the attenuation band was very sensitive to an external magnetic field applied to the crystal, where a 1 Oe change in the field resulted in a 2.6 MHz shift in the band gap. The maximum detection sensitivity of the magnonic crystals was more than 10 times greater that of a giant magneto-impedance element.

The next challenge for the researchers is to demonstrate the measurement of magnetic fields in three dimensions, which is possible using two-dimensional magnonic crystals.

Reference:
Mitsuteru Inoue, Alexander Baryshev, Hiroyuki Takagi, Pang Boey Lim, Kohei Hatafuku, Josho Noda, and Kenji TogoInvestigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperatureApplied Physics Letters 98, 132511 (2011)DOI: 10.1063/1.3567940Department of Electrical and Electronic Engineering, Toyohashi University of Technology, JapanDepartment website: Inoue Lab: http://www.maglab.eee.tut.ac.jp/eng-index.html

Mitsuteru Inoue | Toyohashi University
Further information:
http://www.tut.ac.jp/english/newsletter/research_highlights/research01.html
http://www.maglab.eee.tut.ac.jp/eng-index.html

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>