Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra high sensitivity magnetic field sensors: The attraction of magnonic crystals

19.09.2011
Highly sensitivity devices for the measurement of weak magnetic fields are important in medicine for applications such as monitoring heart and brain activities. Furthermore, mapping the distributions and magnitudes of weak magnetic fields can provide a deeper insight into neuroscience and brain-machine interfaces.

Here, Mitsuteru Inoue and colleagues at Toyohashi University of Technology demonstrate that magnonic crystals—artificial magnetic crystal structures for controlling the propagation of magnetostatic waves—exhibit properties enabling the fabrication of extremely sensitive magnetic field sensors operable at room temperature.

Magnonic crystals support the propagation of magnetostatic waves through the crystal spin system or suppress the propagation of waves due to the periodicity of the crystal structure. In this research the Toyohashi Tech researchers fabricated magnonic crystals by the direct formation of one-dimensional arrays of metal strips on top of yttrium iron garnet, which serves as the propagation medium.

The metal stripes induced an attenuation band in the frequency spectra of the magnonic crystal, and the propagation of waves with the corresponding frequencies was strictly prohibited.

The frequency of the attenuation band was very sensitive to an external magnetic field applied to the crystal, where a 1 Oe change in the field resulted in a 2.6 MHz shift in the band gap. The maximum detection sensitivity of the magnonic crystals was more than 10 times greater that of a giant magneto-impedance element.

The next challenge for the researchers is to demonstrate the measurement of magnetic fields in three dimensions, which is possible using two-dimensional magnonic crystals.

Reference:
Mitsuteru Inoue, Alexander Baryshev, Hiroyuki Takagi, Pang Boey Lim, Kohei Hatafuku, Josho Noda, and Kenji TogoInvestigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperatureApplied Physics Letters 98, 132511 (2011)DOI: 10.1063/1.3567940Department of Electrical and Electronic Engineering, Toyohashi University of Technology, JapanDepartment website: Inoue Lab: http://www.maglab.eee.tut.ac.jp/eng-index.html

Mitsuteru Inoue | Toyohashi University
Further information:
http://www.tut.ac.jp/english/newsletter/research_highlights/research01.html
http://www.maglab.eee.tut.ac.jp/eng-index.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>