Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-distant galaxy spied amidst cosmic 'Dark Ages'

20.09.2012
With the combined power of NASA's Spitzer and Hubble Space Telescopes, as well as a cosmic magnification effect, a team of astronomers, including Carnegie's Daniel Kelson, have spotted what could be the most distant galaxy ever seen.

Light from the young galaxy captured by the orbiting observatories was emitted when our 13.7-billion-year-old universe was just 500 million years old. Their work is published September 20 by Nature.

The far-off galaxy existed within an important era when the universe just emerged from the so-called cosmic Dark Ages. During this period, the universe went from a dark, starless expanse to a recognizable cosmos full of galaxies. The discovery of the faint, small galaxy therefore opens up a window into the deepest, remotest epochs of cosmic history.

"This galaxy is the most distant object we have ever observed with high confidence," said lead author Wei Zheng of Johns Hopkins University. "Future work involving this galaxy—as well as others like it that we hope to find— will allow us to study the universe's earliest objects and how the Dark Ages ended."

Light from the primordial galaxy traveled approximately 13.2 billion light-years before reaching NASA's telescopes. In other words, the starlight snagged by Hubble and Spitzer left the galaxy when the universe was just 3.6 percent of its present age. Technically speaking, the galaxy has a redshift, or "z," of 9.6. (Redshift is a term used by astronomers to mark cosmic distances by denoting how much an object's light has shifted into shorter wavelengths due to the expansion of the universe.)

Unlike previous detections of this epoch's galaxy candidates, which were only glimpsed in a single color, or waveband, this newfound galaxy has been seen in five different wavebands. As part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, the Hubble Space Telescope registered the newly described, far-flung galaxy in four visible and infrared wavelength bands, and Spitzer measured it in a fifth longer-wavelength infrared band, placing the discovery on firmer ground.

Objects at these extreme distances are mostly beyond the detection sensitivity of today's largest telescopes. To catch sight of these early, distant galaxies, astronomers rely on "gravitational lensing." In this phenomenon, predicted by Albert Einstein a century ago, the gravity of foreground objects warps and magnifies the light from background objects. A massive galaxy cluster situated between our galaxy and the newfound, early galaxy magnified the latter's light, brightening the remote object some 15 times and bringing it into view.

Based on the Hubble and Spitzer observations, astronomers think the distant galaxy is less than 200 million years old. It is also small and compact, containing only about one percent of the Milky Way's mass. According to leading cosmological theories, the first galaxies should indeed have started out tiny. They then progressively merged, eventually accumulating into the sizable galaxies of the more modern universe.

"These first galaxies likely played the dominant role in the epoch of reionization, the event that signaled the end of the universe's Dark Ages," Kelson said. "In essence, the light was finally able to penetrate the fog of the universe."

About 400,000 years after the Big Bang, neutral hydrogen gas formed from cooling particles. The first luminous stars and their host galaxies, however, did not emerge until a few hundred million years later. The energy released by the earliest galaxies is thought to have caused the neutral hydrogen strewn throughout the universe to ionize, or lose an electron, a state that the gas has remained in since that time.

Astronomers plan to study the rise of the first stars and galaxies and the epoch of reionization with the successor to both the Hubble and Spitzer telescopes, NASA's James Webb Telescope, slated for launch in 2018. The newly described, distant galaxy will likely be a prime target given the fortuitousness of it being so strongly gravitationally lensed.

The CLASH program is based on observations made with the NASA/ESA Hubble Space Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy Inc. under NASA contract. This work is also based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Daniel Kelson | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>