Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK astronomers observe asteroid before it crashes into Earth

30.03.2009
UK astronomers, using the Science and Technology Facilities Council's (STFC) William Herschel Telescope on La Palma, observed a rare asteroid as it was hurtling towards our planet and have captured the only spectrum of it before it exploded in our atmosphere.

This is the very first time that an asteroid that hit the Earth has been studied before entering our atmosphere, allowing the scientists to predict whether it would explode and break up in the atmosphere or reach the ground – which determines whether an asteroid poses any threat. The results of the international collaboration studying the asteroid are published in this week's (March 26th) issue of Nature.

The asteroid in question - 2008 TC3 - an 80 tonne, 4 meter asteroid with a rare composition, was first sighted by US telescopes on 6th October 2008. Subsequent observations by an international army of professional and amateur astronomers led to the discovery that it was racing towards our planet and was due to enter the atmosphere the following morning.

"This was the first ever predicted impact of an asteroid with the Earth and the very first time an asteroid of any size has been studied before impact," said Prof. Alan Fitzsimmons, from the Queen's University Belfast. "The faint observed brightness implied a small size, which in turn meant there was little advance warning. It was important to try and figure out what type of asteroid it was before impact, which would give us a better idea of its size and where it came from. This event shows we can successfully predict the impact of asteroids even with a short warning time, and obtain the astronomical observations necessary to estimate what will happen when the asteroid reaches us."

The spectrum gathered by the UK astronomers allowed them to obtain information on the size and composition of the asteroid and to establish the first direct link between an asteroid and the individual meteorites produced as it breaks up in our atmosphere. Not only does this help to validate the whole process of remotely surveying asteroids but comparing the asteroid and meteorite data tells us that 2008 TC3 may have only spent a few million years existing in the Inner Solar system before it hit our planet.

The team that observed the asteroid were already at the telescope when they got the news of its approach. Only 4 and a half hours before impact, they were able to use the ISIS spectrograph on the William Herschel Telescope to measure how light reflected from its surface.

Sam Duddy from Queen's University Belfast explained, "When we found we could observe the asteroid from the telescope it was an exciting couple of hours planning the details of the observations we would conduct. Actually performing the observations of an object that was certain to impact the atmosphere was a great but challenging experience."

"These observations were technically quite difficult since the object was moving fast across the sky," said Dr. Gavin Ramsay from Armagh Observatory. "However, the William Hershel Telescope rose to the challenge magnificently and demonstrated just what a versatile telescope it is. There was a keen sense of excitement in the control room."

Some small fragments survived the high-altitude explosion that vapourised most of the asteroid. The lead author of the article, astronomer Dr. Peter Jenniskens of the SETI institute in California, teamed up with Dr. Muawia Shaddad and 45 students and staff of the University of Khartoum to search the Nubian Desert in Sudan for meteorites. In the first search campaign on 5th-8th December, 15 meteorites were recovered over an area 29 km long along the calculated approach path of the 4-meter sized asteroid. In later searches, a total of 4 kg of meteorites was found, which still accounts for only a small fraction of the 80 tonnes that crashed into the Earth's atmosphere.

"This asteroid was made of a particularly fragile material that caused it to explode at a high 37 km altitude, before it was significantly slowed down, so that the few surviving fragments scattered over a large area," explains Dr. Peter Jenniskens of the SETI institute in California. "The recovered meteorites were unlike anything in our meteorite collections up to that point."

After measuring how the meteorites reflected light, it was discovered that the spectra of the asteroid and meteorites agree well, which implies that the asteroid was not covered in dust and did not have much weathering from radiation in space. More importantly, the team found that 2008 TC3 was a rare type of asteroid, called F-class, corresponding to dark ureilite achondrite meteorites with a texture and composition unlike any other ureilite meteorites found on Earth before.

Prof. Richard Crowther of the Science and Technology Facilities Council (STFC) and Chair of the UN Working Group that deals with near earth object (NEO) threats said, "The search for and study of asteroids is extremely important as not all impacts are as harmless as this small one in October. Larger impacts of the size associated with the Tunguska event of 1908 occur every few hundred years and even larger impacts with asteroids and comets the size of mountains occur every few tens of millions of years. Any extra knowledge we can gain about asteroids will help us mitigate the potential effects of such impacts in the future."

Julia Short | EurekAlert!
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>