Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF leads world in reconfigurable supercomputing

16.02.2011
University of Florida researchers say their supercomputer, named Novo-G, is the world’s fastest reconfigurable supercomputer and is able to perform some important science applications faster than the Chinese supercomputer touted as the world’s most powerful.

In November, the TOP500 list of the world’s most powerful supercomputers, for the first time ever, named the Chinese Tianhe-1A system at the National Computer Center in Tainjin, China as No. 1.

In his state of the union speech, President Barack Obama noted, “Just recently, China became home of the world’s largest solar research facility, and the world’s fastest computer.”

But that list does not include reconfigurable supercomputers such as Novo-G, built and developed at the University of Florida, said Alan George, professor of electrical and computer engineering, and director of the National Science Foundation’s Center for High-Performance Reconfigurable Computing, known as CHREC.

“Novo-G is believed to be the most powerful reconfigurable machine on the planet and, for some applications, it is the most powerful computer of any kind on the planet,” George said.

“It is very difficult to accurately rank supercomputers because it depends upon what you want them to do,” George said, adding that the TOP500 list ranks supercomputers by their performance on a few basic routines in linear algebra using 64-bit, floating-point arithmetic.

However, a significant number of the most important applications in the world do not adhere to that standard, including a growing list of vital applications in health and life sciences, signal and image processing, financial science, and more under study with Novo-G at Florida.

Most of the world’s computers, from smart-phones to laptops to Tianhe-1A, feature microprocessors with fixed-logic hardware structures. All software applications for these systems must conform to these fixed structures, which can lead to a significant loss in speed and increase in energy consumption.

By contrast, with reconfigurable machines, a relatively new and highly innovative form of computing, the architecture can adapt to match the unique needs of each application, which can lead to much faster speed and less wasted energy due to adaptive hardware customization.

Novo-G uses 192 reconfigurable processors and “can rival the speed of the world’s largest supercomputers at a tiny fraction of their cost, size, power, and cooling,” the researchers noted in a new article on Novo-G published in the January-February edition of the IEEE Computing in Science and Engineering magazine.

Conventional supercomputers, some the size of a large building, can consume up to millions of watts of electrical power, generating massive amounts of heat, whereas Novo-G is about the size of two home refrigerators and consumes less than 8,000 watts.

Later this year, researchers will double the reconfigurable capacity of Novo-G, an upgrade only requiring a modest increase in size, power, and cooling, unlike upgrades with conventional supercomputers.

In their article, the researchers discuss Novo-G and its obvious advantages for use in certain applications such as genome research, cancer diagnosis, plant science, and the ability to analyze large data sets.

Herman Lam, an electrical and computer engineering professor and co-investigator on Novo-G, said some vital science applications that can take months or years to run on a personal computer can run in minutes or hours on the Novo-G, such as applications for DNA sequence alignment at UF’s Interdisciplinary Center for Biotechnology Research.

CHREC is comprised of research sites at four universities including Florida, Brigham Young, George Washington and Virginia Tech. In addition, there are more than 30 partners in CHREC, such as the U.S. Air Force, Army, and Navy, NASA, National Security Agency, Boeing, Honeywell, Lockheed Martin, Monsanto, Northrop Grumman, and the Los Alamos, Oak Ridge and Sandia National Labs.

Writer
Ron Word, rword@ufl.edu, 352-392-0186
Source
Herman Lam, hlam@ufl.edu, 352-392-2689
Source
Alan George, ageorge@ufl.edu, 352-392-5225

Herman Lam | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>