Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF astronomers, NASA team find six closely packed planets orbiting same star

03.02.2011
A NASA team including three University of Florida astronomers has found six new planets in a distant solar system that in some ways resembles our own.

The NASA team, including UF associate professor Eric Ford, postdoctoral associate Althea Moorhead and graduate student Robert Morehead, will announce its findings in Thursday’s issue of the journal Nature.

“This is the new prototype for a system of rocky planets beyond our own,” Ford said. “It changes our understanding of the frequency of solar systems like our own in deep space.”

The planets orbit Kepler-11, a sun-like star about 2,000 light years away. With temperatures hotter than Venus – likely more than 400 to 1,400 degrees Fahrenheit – the planets range in size from twice to 4½ times Earth’s diameter. The five confirmed planets are larger in mass but less dense than Earth, and closely packed, taking from 10 to 47 days to orbit the star. There is almost certainly a sixth planet orbiting nearly twice as far away, but its distance from the star makes its confirmation more difficult, Ford said.

Although scientists haven’t yet determined the planets’ composition, their densities offer some clues. Denser than water but less dense than Earth, “their surfaces could be rocky or a combination of rock and ice, but they also have a lot of gas because their densities are so low,” Ford said.

The Kepler mission is searching for planets in what is known as the habitable zone — where a planet could have liquid water on its surface — using a space telescope staring at one portion of the Milky Way for years on end. The Kepler-11 planets were detected not by direct observation but by tracking the dimming of a star’s light when planets pass between the star and the telescope. The objects orbiting Kepler-11 were confirmed as planets by observing small irregularities in the time when each planet transits across the star, known as the transit-time variation method.

The Kepler-11 system marks the second set of planets identified by this technique, which allows scientists to find planets orbiting stars that would otherwise be too faint to be confirmed. The first system discovered by this method was Kepler-9, announced Aug. 26, 2010, which included two gas-giant planets. Kepler-11 is nearly 500 times dimmer than stars that are typically discovered by traditional methods. “This comes as a surprise to those accustomed the traditional planet-discovery technique,” Ford said.

Kepler-11 also is remarkable in that the planets travel in nearly the same plane, similar to those in our solar system, making it much more likely that multiple planets could be detected orbiting a single star. The next step will be to delve deeper into the data continuing to arrive from the Kepler spacecraft to determine mass and orbits of the planets more precisely, providing clues to how the planets formed.

“Much of the scientific community thought that multiple planets transiting the same star would be unlikely,” Ford said. “That idea has been completely overturned by this new discovery. Without the transit-timing method, these planets might have gone unconfirmed for years.”

Credits

Writer
Alisson Clark
Source
Eric Ford, eford@astro.ufl.edu, 352-392-2052

Eric Ford | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>