Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF astronomers, NASA team find six closely packed planets orbiting same star

03.02.2011
A NASA team including three University of Florida astronomers has found six new planets in a distant solar system that in some ways resembles our own.

The NASA team, including UF associate professor Eric Ford, postdoctoral associate Althea Moorhead and graduate student Robert Morehead, will announce its findings in Thursday’s issue of the journal Nature.

“This is the new prototype for a system of rocky planets beyond our own,” Ford said. “It changes our understanding of the frequency of solar systems like our own in deep space.”

The planets orbit Kepler-11, a sun-like star about 2,000 light years away. With temperatures hotter than Venus – likely more than 400 to 1,400 degrees Fahrenheit – the planets range in size from twice to 4½ times Earth’s diameter. The five confirmed planets are larger in mass but less dense than Earth, and closely packed, taking from 10 to 47 days to orbit the star. There is almost certainly a sixth planet orbiting nearly twice as far away, but its distance from the star makes its confirmation more difficult, Ford said.

Although scientists haven’t yet determined the planets’ composition, their densities offer some clues. Denser than water but less dense than Earth, “their surfaces could be rocky or a combination of rock and ice, but they also have a lot of gas because their densities are so low,” Ford said.

The Kepler mission is searching for planets in what is known as the habitable zone — where a planet could have liquid water on its surface — using a space telescope staring at one portion of the Milky Way for years on end. The Kepler-11 planets were detected not by direct observation but by tracking the dimming of a star’s light when planets pass between the star and the telescope. The objects orbiting Kepler-11 were confirmed as planets by observing small irregularities in the time when each planet transits across the star, known as the transit-time variation method.

The Kepler-11 system marks the second set of planets identified by this technique, which allows scientists to find planets orbiting stars that would otherwise be too faint to be confirmed. The first system discovered by this method was Kepler-9, announced Aug. 26, 2010, which included two gas-giant planets. Kepler-11 is nearly 500 times dimmer than stars that are typically discovered by traditional methods. “This comes as a surprise to those accustomed the traditional planet-discovery technique,” Ford said.

Kepler-11 also is remarkable in that the planets travel in nearly the same plane, similar to those in our solar system, making it much more likely that multiple planets could be detected orbiting a single star. The next step will be to delve deeper into the data continuing to arrive from the Kepler spacecraft to determine mass and orbits of the planets more precisely, providing clues to how the planets formed.

“Much of the scientific community thought that multiple planets transiting the same star would be unlikely,” Ford said. “That idea has been completely overturned by this new discovery. Without the transit-timing method, these planets might have gone unconfirmed for years.”

Credits

Writer
Alisson Clark
Source
Eric Ford, eford@astro.ufl.edu, 352-392-2052

Eric Ford | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>