Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF astronomers, NASA team find six closely packed planets orbiting same star

03.02.2011
A NASA team including three University of Florida astronomers has found six new planets in a distant solar system that in some ways resembles our own.

The NASA team, including UF associate professor Eric Ford, postdoctoral associate Althea Moorhead and graduate student Robert Morehead, will announce its findings in Thursday’s issue of the journal Nature.

“This is the new prototype for a system of rocky planets beyond our own,” Ford said. “It changes our understanding of the frequency of solar systems like our own in deep space.”

The planets orbit Kepler-11, a sun-like star about 2,000 light years away. With temperatures hotter than Venus – likely more than 400 to 1,400 degrees Fahrenheit – the planets range in size from twice to 4½ times Earth’s diameter. The five confirmed planets are larger in mass but less dense than Earth, and closely packed, taking from 10 to 47 days to orbit the star. There is almost certainly a sixth planet orbiting nearly twice as far away, but its distance from the star makes its confirmation more difficult, Ford said.

Although scientists haven’t yet determined the planets’ composition, their densities offer some clues. Denser than water but less dense than Earth, “their surfaces could be rocky or a combination of rock and ice, but they also have a lot of gas because their densities are so low,” Ford said.

The Kepler mission is searching for planets in what is known as the habitable zone — where a planet could have liquid water on its surface — using a space telescope staring at one portion of the Milky Way for years on end. The Kepler-11 planets were detected not by direct observation but by tracking the dimming of a star’s light when planets pass between the star and the telescope. The objects orbiting Kepler-11 were confirmed as planets by observing small irregularities in the time when each planet transits across the star, known as the transit-time variation method.

The Kepler-11 system marks the second set of planets identified by this technique, which allows scientists to find planets orbiting stars that would otherwise be too faint to be confirmed. The first system discovered by this method was Kepler-9, announced Aug. 26, 2010, which included two gas-giant planets. Kepler-11 is nearly 500 times dimmer than stars that are typically discovered by traditional methods. “This comes as a surprise to those accustomed the traditional planet-discovery technique,” Ford said.

Kepler-11 also is remarkable in that the planets travel in nearly the same plane, similar to those in our solar system, making it much more likely that multiple planets could be detected orbiting a single star. The next step will be to delve deeper into the data continuing to arrive from the Kepler spacecraft to determine mass and orbits of the planets more precisely, providing clues to how the planets formed.

“Much of the scientific community thought that multiple planets transiting the same star would be unlikely,” Ford said. “That idea has been completely overturned by this new discovery. Without the transit-timing method, these planets might have gone unconfirmed for years.”

Credits

Writer
Alisson Clark
Source
Eric Ford, eford@astro.ufl.edu, 352-392-2052

Eric Ford | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>