Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB professor develops cutting-edge detector technology for astronomical observations

05.11.2013
Semiconductors have had a nice run, but for certain applications, such as astrophysics, they are being edged out by superconductors.

Ben Mazin, assistant professor of physics at UC Santa Barbara, has developed a superconducting detector array that measures the energy of individual photons. The design and construction of an instrument based on these arrays, as well as an analysis of its commissioning data, appear in the Publications of the Astronomical Society of the Pacific.


This is a mosaic of the interacting galaxies Arp 147 made with ARCONS on the Palomar 200" telescope with an insert of Arp 147 taken by the Hubble Space Telescope.

Credit: UCSB

"What we have made is essentially a hyperspectral video camera with no intrinsic noise," Mazin said. "On a pixel-per-pixel basis, it's a quantum leap from semiconductor detectors; it's as big a leap going from film to semiconductors as it is going from semiconductors to these superconductors. This allows all kinds of really interesting instruments based on this technology."

Mazin's ARray Camera for Optical to Near-infrared (IR) Spectrophotometry (ARCONS) is the first ground-based instrument optical through near-IR using Microwave Kinetic Inductance Detectors (MKIDs). An MKID is a type of superconducting photon detector; microwave refers to the readout frequency rather than the frequency at which the detectors operate.

MKIDs were first developed a decade ago by Mazin, his Ph.D. adviser Jonas Zmuidzinas, professor of physics at the California Institute of Technology, and Dr. Henry LeDuc at NASA's Jet Propulsion Laboratory. MKIDs are used in astronomy for taking measurements across the electromagnetic spectrum. In his lab at UCSB, Mazin has adapted these detectors for the ultraviolet, optical and near-IR parts of the spectrum.

Superconductivity is a quantum phenomenon that occurs as certain materials are cooled to near absolute zero, thereby eliminating all electrical resistance and magnetic fields. MKIDs, which operate at cryogenic temperatures (typically 0.1 Kelvin), allow astronomers to determine the energy and arrival time of individual photons.

"Forty years ago we were doing optical astronomy with photographic plates, which use light to change a chemical emulsion," Mazin explained. "When we switched from photographic plates to the charge couple devices (CCDs) contained in today's electronics, per-pixel performance of the detectors went up by a factor of 20.

"In the last decade, CCDs and other semiconductor-based detectors for the optical and near-IR have started to hit fundamental limits in their per-pixel performance," Mazin added. "They've gotten about as good as they can get in a given pixel. The way they continue to improve is by making huge pixel mosaics, which is appropriate for many but not all applications."

For observations of rare objects like optical pulsars and high redshift galaxies, ARCONS' small field of view (20 inches by 20 inches) is not a drawback. In fact, it exponentially improves observing efficiency as compared to conventional filter-based multicolor observations. Another advantage of MKIDs is time resolution, which shows the arrival of each and every photon. This allows astronomers to see rapidly changing events, a great advantage for many observations.

MKIDs have inherent frequency domain multiplexing capabilities, which enable thousands of devices to be read out over a single microwave feed line. The size of the arrays is limited by the microwave readout, which uses very similar technology to a cellphone base station. This means the number of MKIDs that can be read out for a given price is increasing according to Moore's Law –– overall processing power for computers doubles every two years –– which should enable megapixel arrays within a decade.

Mazin and his team lens-coupled a 2024-pixel array to the Palomar 200-inch and the Lick 120-inch telescopes in Southern California and Northern California, respectively. ARCONS was on these telescopes for 24 observing nights, during which data was collected on optical pulsars, compact binaries, high redshift galaxies and planetary transits.

"ARCONS is very sensitive but it's been coupled with 5-meter telescopes," Mazin said. "The 8- to 10-meter telescopes, such as Keck, are at better sites with four times the collecting area. We hope to deploy MKID instruments in the next several years at Keck and other telescopes to make fascinating new observations, including using MKIDs coupled to a coronagraph to directly discover and take spectra of planets around nearby stars."

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>