Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB physicists make discovery in the quantum realm

05.03.2013
Physicists at UC Santa Barbara are manipulating light on superconducting chips, and forging new pathways to building the quantum devices of the future –– including super-fast and powerful quantum computers.

The science behind tomorrow's quantum computing and communications devices is being conducted today at UCSB in what some physicists consider to be one of the world's top laboratories in the study of quantum physics. A team in the lab of John Martinis, UCSB professor of physics, has made a discovery that provides new understanding in the quantum realm and the findings are published this week in Physical Review Letters.


This is a schematic diagram of part of the superconducting chip. The wavy line is the superconducting cavity. The piece in the bottom right is the superconducting switch.

Credit: UCSB

"As one crucial step of achieving controllable quantum devices, we have developed an unprecedented level of manipulating light on a superconducting chip," said first author Yi Yin. Yin worked on the project when she was a postdoctoral fellow in the Martinis Lab from 2009 to 2012. She relocated to her native China last fall, where she is now a professor at Zhejiang University in the city of Hangzhou.

"In our experiment, we caught and released photons in and from a superconducting cavity by incorporating a superconducting switch," said Yin. "By controlling the switch on and off, we were able to open and close a door between the confined cavity and the road where photons can transmit. The on/off speed should be fast enough with a tuning time much shorter than the photon lifetime of the cavity."

She explained that not only can the switch be in an on/off state, it also can be opened continuously, like a shutter. In that way, the research team was able to shape the released photons in different wave forms –– a key element for the next step they want to accomplish: controlled photon transfer between two distant cavities.

Co-author Yu Chen, also a postdoctoral fellow in the Martinis lab, said that this way of moving information around –– sending and catching information –– is one of the most important features of this research. "In optics, people imagine sending information from Earth to a satellite and then back –– really remote quantum communication," he said.

"The shutter controls the release of this photon," said Chen. "You need to perfectly transfer a bit of information, and this shutter helps you to do that."

Co-author Jim Wenner, a graduate student in the Martinis lab, explained another application. "Another one, again with communication, would be providing ways to transmit signals in a secure manner over long distances," said Wenner.

He said that, instead of another shutter, Yin used classical electronics to drive the photon. She then captured the signal in the superconducting cavity, in an area called the meander, or the resonator. Then the shutter controlled the release of the photon.

Wenner explained that the resonator, a superconducting cavity, is etched on the flat, superconducting chip –– which is about one quarter of an inch square. It is chilled to a temperature of about minus-273.12 degrees Celsius.

Yin completed her B.S. in physics at the University of Science and Technology in China, before going to Harvard University to earn a Ph.D. in physics. Of the time she spent at UCSB, Yin said: "The Martinis group is one of the best groups in the field of superconducting quantum devices in the world, which strongly attracted me to find the opportunity to work here.

"The whole group is a very young, energetic, and creative team, with the strong leadership and support of Professor John Martinis. I am very happy to have learned the advanced techniques and to have studied the exotic quantum devices of this group." She credits the support of the entire UCSB team, especially important technique support from co-authors Yu Chen, Daniel Sank, Peter O'Malley, Ted White, and Jim Wenner.

In addition to Martinis, the other co-authors from UCSB are Rami Barends, Julian Kelly, Anthony Megrant, Charles Neill, Amit Vainsencher, and Andrew Cleland. Additional contributors are Erik Lucero, now with the IBM T.J. Watson Research Center; Matteo Mariantoni, now with the University of Waterloo, Waterloo, Canada; and Alexander N. Korotkov, with the University of California, Riverside.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>