Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSB physicists make discovery in the quantum realm

Physicists at UC Santa Barbara are manipulating light on superconducting chips, and forging new pathways to building the quantum devices of the future –– including super-fast and powerful quantum computers.

The science behind tomorrow's quantum computing and communications devices is being conducted today at UCSB in what some physicists consider to be one of the world's top laboratories in the study of quantum physics. A team in the lab of John Martinis, UCSB professor of physics, has made a discovery that provides new understanding in the quantum realm and the findings are published this week in Physical Review Letters.

This is a schematic diagram of part of the superconducting chip. The wavy line is the superconducting cavity. The piece in the bottom right is the superconducting switch.

Credit: UCSB

"As one crucial step of achieving controllable quantum devices, we have developed an unprecedented level of manipulating light on a superconducting chip," said first author Yi Yin. Yin worked on the project when she was a postdoctoral fellow in the Martinis Lab from 2009 to 2012. She relocated to her native China last fall, where she is now a professor at Zhejiang University in the city of Hangzhou.

"In our experiment, we caught and released photons in and from a superconducting cavity by incorporating a superconducting switch," said Yin. "By controlling the switch on and off, we were able to open and close a door between the confined cavity and the road where photons can transmit. The on/off speed should be fast enough with a tuning time much shorter than the photon lifetime of the cavity."

She explained that not only can the switch be in an on/off state, it also can be opened continuously, like a shutter. In that way, the research team was able to shape the released photons in different wave forms –– a key element for the next step they want to accomplish: controlled photon transfer between two distant cavities.

Co-author Yu Chen, also a postdoctoral fellow in the Martinis lab, said that this way of moving information around –– sending and catching information –– is one of the most important features of this research. "In optics, people imagine sending information from Earth to a satellite and then back –– really remote quantum communication," he said.

"The shutter controls the release of this photon," said Chen. "You need to perfectly transfer a bit of information, and this shutter helps you to do that."

Co-author Jim Wenner, a graduate student in the Martinis lab, explained another application. "Another one, again with communication, would be providing ways to transmit signals in a secure manner over long distances," said Wenner.

He said that, instead of another shutter, Yin used classical electronics to drive the photon. She then captured the signal in the superconducting cavity, in an area called the meander, or the resonator. Then the shutter controlled the release of the photon.

Wenner explained that the resonator, a superconducting cavity, is etched on the flat, superconducting chip –– which is about one quarter of an inch square. It is chilled to a temperature of about minus-273.12 degrees Celsius.

Yin completed her B.S. in physics at the University of Science and Technology in China, before going to Harvard University to earn a Ph.D. in physics. Of the time she spent at UCSB, Yin said: "The Martinis group is one of the best groups in the field of superconducting quantum devices in the world, which strongly attracted me to find the opportunity to work here.

"The whole group is a very young, energetic, and creative team, with the strong leadership and support of Professor John Martinis. I am very happy to have learned the advanced techniques and to have studied the exotic quantum devices of this group." She credits the support of the entire UCSB team, especially important technique support from co-authors Yu Chen, Daniel Sank, Peter O'Malley, Ted White, and Jim Wenner.

In addition to Martinis, the other co-authors from UCSB are Rami Barends, Julian Kelly, Anthony Megrant, Charles Neill, Amit Vainsencher, and Andrew Cleland. Additional contributors are Erik Lucero, now with the IBM T.J. Watson Research Center; Matteo Mariantoni, now with the University of Waterloo, Waterloo, Canada; and Alexander N. Korotkov, with the University of California, Riverside.

Gail Gallessich | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>