Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB physicists make discovery in the quantum realm

05.03.2013
Physicists at UC Santa Barbara are manipulating light on superconducting chips, and forging new pathways to building the quantum devices of the future –– including super-fast and powerful quantum computers.

The science behind tomorrow's quantum computing and communications devices is being conducted today at UCSB in what some physicists consider to be one of the world's top laboratories in the study of quantum physics. A team in the lab of John Martinis, UCSB professor of physics, has made a discovery that provides new understanding in the quantum realm and the findings are published this week in Physical Review Letters.


This is a schematic diagram of part of the superconducting chip. The wavy line is the superconducting cavity. The piece in the bottom right is the superconducting switch.

Credit: UCSB

"As one crucial step of achieving controllable quantum devices, we have developed an unprecedented level of manipulating light on a superconducting chip," said first author Yi Yin. Yin worked on the project when she was a postdoctoral fellow in the Martinis Lab from 2009 to 2012. She relocated to her native China last fall, where she is now a professor at Zhejiang University in the city of Hangzhou.

"In our experiment, we caught and released photons in and from a superconducting cavity by incorporating a superconducting switch," said Yin. "By controlling the switch on and off, we were able to open and close a door between the confined cavity and the road where photons can transmit. The on/off speed should be fast enough with a tuning time much shorter than the photon lifetime of the cavity."

She explained that not only can the switch be in an on/off state, it also can be opened continuously, like a shutter. In that way, the research team was able to shape the released photons in different wave forms –– a key element for the next step they want to accomplish: controlled photon transfer between two distant cavities.

Co-author Yu Chen, also a postdoctoral fellow in the Martinis lab, said that this way of moving information around –– sending and catching information –– is one of the most important features of this research. "In optics, people imagine sending information from Earth to a satellite and then back –– really remote quantum communication," he said.

"The shutter controls the release of this photon," said Chen. "You need to perfectly transfer a bit of information, and this shutter helps you to do that."

Co-author Jim Wenner, a graduate student in the Martinis lab, explained another application. "Another one, again with communication, would be providing ways to transmit signals in a secure manner over long distances," said Wenner.

He said that, instead of another shutter, Yin used classical electronics to drive the photon. She then captured the signal in the superconducting cavity, in an area called the meander, or the resonator. Then the shutter controlled the release of the photon.

Wenner explained that the resonator, a superconducting cavity, is etched on the flat, superconducting chip –– which is about one quarter of an inch square. It is chilled to a temperature of about minus-273.12 degrees Celsius.

Yin completed her B.S. in physics at the University of Science and Technology in China, before going to Harvard University to earn a Ph.D. in physics. Of the time she spent at UCSB, Yin said: "The Martinis group is one of the best groups in the field of superconducting quantum devices in the world, which strongly attracted me to find the opportunity to work here.

"The whole group is a very young, energetic, and creative team, with the strong leadership and support of Professor John Martinis. I am very happy to have learned the advanced techniques and to have studied the exotic quantum devices of this group." She credits the support of the entire UCSB team, especially important technique support from co-authors Yu Chen, Daniel Sank, Peter O'Malley, Ted White, and Jim Wenner.

In addition to Martinis, the other co-authors from UCSB are Rami Barends, Julian Kelly, Anthony Megrant, Charles Neill, Amit Vainsencher, and Andrew Cleland. Additional contributors are Erik Lucero, now with the IBM T.J. Watson Research Center; Matteo Mariantoni, now with the University of Waterloo, Waterloo, Canada; and Alexander N. Korotkov, with the University of California, Riverside.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>