Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UChicago Commits $50M to Giant Magellan Telescope

The University of Chicago has joined the effort to build the world’s largest telescope in Chile, which will eclipse the image quality even of the Hubble Space Telescope, as the quest continues for answers to some the deepest mysteries of modern cosmology.

The University will provide $50 million to become a founding partner in the project called the Giant Magellan Telescope, which will be able to produce images of objects 100 times fainter than the Hubble Space Telescope can detect.

“The University of Chicago’s Department of Astronomy & Astrophysics is among the best astronomy and astrophysics departments in the country and worldwide,” said Wendy Freedman, director of the Carnegie Observatories and chairperson of the GMT Organization. “This is exactly the kind of partner we need to make this ambitious telescope project a success.”

The other founding GMT partners are the Carnegie Institution for Science, University of Texas at Austin, Harvard University, Australian National University, Smithsonian Astrophysical Observatory, University of Arizona, Texas A&M University, Astronomy Australia Ltd., and the Korea Astronomy and Space Science Institute. Construction of the GMT will begin at Las Campanas Observatory, Chile, in 2012 and will take approximately seven years to complete.

“Chicago has a great tradition in exploring the universe,” said Robert Kirshner, Harvard’s Clowes Professor of Science. “At the founding of the university, Chicago built the world’s largest telescope at Yerkes, Chicago trained Edwin Hubble, the leading astronomer of the 20th century, and now they’re looking to be leaders in the field for the 21st century.”

UChicago also has committed an additional $14 million to join the related consortium that currently operates the twin 6.5-meter Magellan Telescopes at Las Campanas. These arrangements guarantee that UChicago scientists will receive a share of observing time on the telescopes, a critical component of pioneering cosmological research.

“The twin Magellan Telescopes give our astronomers immediate access to some of the best optical telescopes in the world,” said Edward “Rocky” Kolb, chairman of UChicago’s Department of Astronomy & Astrophysics. “We’re looking to make great discoveries with the Magellan Telescopes. They will be the workhorses of the department in optical astronomy for the next 10 years.”

These telescopes are necessary tools for prying loose answers to the mysteries of dark energy and dark matter, two of the biggest questions confronting modern cosmologists, Kolb said. Dark energy is a repulsive force of unknown origin that is accelerating the expansion of the universe. Dark matter is a material of unknown composition that is far more plentiful in the universe than the ordinary matter of everyday life. Theories and observations have convinced most cosmologists that dark energy and dark matter exist in huge amounts, but their precise nature has remained elusive.

The Magellan Telescopes will complement UChicago research at the South Pole Telescope and in the Dark Energy Survey.

“Even now, the South Pole Telescope is discovering sources that are being followed up by observations at the Magellan Telescopes,” Kolb said. “The important thing for the department is to have not just one facility, but an array of these different facilities to do the science that we want to do.”

Beyond the next decade, UChicago astronomers will turn to the next-generation GMT to make their optical observations. In addition to research on dark energy and dark matter, the GMT will be capable of searching for planets around stars other than the sun. “This is part of the goal of looking for Earth-like planets around other stars that could be the sites for life,” Kolb said. “This is one of the new avenues that the Giant Magellan Telescope will open, in addition to being able to look at the sky with unprecedented resolution and light-gathering power.”

The $700 million GMT will combine seven 8.4-meter primary mirror segments into the equivalent of a 24.5-meter telescope (nearly 82 feet). The first mirror, now under development at the Steward Observatory Mirror Lab at the University of Arizona, will be completed late this year.

UChicago has a deep historical link to the Carnegie Observatories through its founder, George Ellery Hale (1868-1938). Hale founded UChicago’s Department of Astronomy & Astrophysics in the 1890s and became the founding director of Yerkes Observatory in Williams Bay, Wis., in 1897. A Chicago native, Hale later founded the Mount Wilson and Palomar observatories, today known as the Carnegie Observatories, in southern California.

“Hale spent a great part of his life and career building the biggest telescopes in the world at that time,” Freedman said. “He started out at Chicago doing just that, and he ended up at Carnegie continuing to do that. So the idea that both institutions would come together in the future, I suspect, would really please him.”

Steve Koppes | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>