Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UChicago Commits $50M to Giant Magellan Telescope

21.07.2010
The University of Chicago has joined the effort to build the world’s largest telescope in Chile, which will eclipse the image quality even of the Hubble Space Telescope, as the quest continues for answers to some the deepest mysteries of modern cosmology.

The University will provide $50 million to become a founding partner in the project called the Giant Magellan Telescope, which will be able to produce images of objects 100 times fainter than the Hubble Space Telescope can detect.

“The University of Chicago’s Department of Astronomy & Astrophysics is among the best astronomy and astrophysics departments in the country and worldwide,” said Wendy Freedman, director of the Carnegie Observatories and chairperson of the GMT Organization. “This is exactly the kind of partner we need to make this ambitious telescope project a success.”

The other founding GMT partners are the Carnegie Institution for Science, University of Texas at Austin, Harvard University, Australian National University, Smithsonian Astrophysical Observatory, University of Arizona, Texas A&M University, Astronomy Australia Ltd., and the Korea Astronomy and Space Science Institute. Construction of the GMT will begin at Las Campanas Observatory, Chile, in 2012 and will take approximately seven years to complete.

“Chicago has a great tradition in exploring the universe,” said Robert Kirshner, Harvard’s Clowes Professor of Science. “At the founding of the university, Chicago built the world’s largest telescope at Yerkes, Chicago trained Edwin Hubble, the leading astronomer of the 20th century, and now they’re looking to be leaders in the field for the 21st century.”

UChicago also has committed an additional $14 million to join the related consortium that currently operates the twin 6.5-meter Magellan Telescopes at Las Campanas. These arrangements guarantee that UChicago scientists will receive a share of observing time on the telescopes, a critical component of pioneering cosmological research.

“The twin Magellan Telescopes give our astronomers immediate access to some of the best optical telescopes in the world,” said Edward “Rocky” Kolb, chairman of UChicago’s Department of Astronomy & Astrophysics. “We’re looking to make great discoveries with the Magellan Telescopes. They will be the workhorses of the department in optical astronomy for the next 10 years.”

These telescopes are necessary tools for prying loose answers to the mysteries of dark energy and dark matter, two of the biggest questions confronting modern cosmologists, Kolb said. Dark energy is a repulsive force of unknown origin that is accelerating the expansion of the universe. Dark matter is a material of unknown composition that is far more plentiful in the universe than the ordinary matter of everyday life. Theories and observations have convinced most cosmologists that dark energy and dark matter exist in huge amounts, but their precise nature has remained elusive.

The Magellan Telescopes will complement UChicago research at the South Pole Telescope and in the Dark Energy Survey.

“Even now, the South Pole Telescope is discovering sources that are being followed up by observations at the Magellan Telescopes,” Kolb said. “The important thing for the department is to have not just one facility, but an array of these different facilities to do the science that we want to do.”

Beyond the next decade, UChicago astronomers will turn to the next-generation GMT to make their optical observations. In addition to research on dark energy and dark matter, the GMT will be capable of searching for planets around stars other than the sun. “This is part of the goal of looking for Earth-like planets around other stars that could be the sites for life,” Kolb said. “This is one of the new avenues that the Giant Magellan Telescope will open, in addition to being able to look at the sky with unprecedented resolution and light-gathering power.”

The $700 million GMT will combine seven 8.4-meter primary mirror segments into the equivalent of a 24.5-meter telescope (nearly 82 feet). The first mirror, now under development at the Steward Observatory Mirror Lab at the University of Arizona, will be completed late this year.

UChicago has a deep historical link to the Carnegie Observatories through its founder, George Ellery Hale (1868-1938). Hale founded UChicago’s Department of Astronomy & Astrophysics in the 1890s and became the founding director of Yerkes Observatory in Williams Bay, Wis., in 1897. A Chicago native, Hale later founded the Mount Wilson and Palomar observatories, today known as the Carnegie Observatories, in southern California.

“Hale spent a great part of his life and career building the biggest telescopes in the world at that time,” Freedman said. “He started out at Chicago doing just that, and he ended up at Carnegie continuing to do that. So the idea that both institutions would come together in the future, I suspect, would really please him.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>