Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego Researchers Advance Explanation for Star Formation

22.10.2013
Study uses computer simulations to provide physical explanation for Larson’s Laws

A newly published paper by three UC San Diego astrophysics researchers for the first time provides an explanation for the origin of three observed correlations between various properties of molecular clouds in the Milky Way galaxy known as Larson’s Laws.

The paper, called ‘A Supersonic Turbulence Origin of Larson’s Laws’, was published this month in the Monthly Notices of the Royal Astronomical Society, Great Britain’s pre-eminent astronomy and astrophysics journal. Larson’s Laws, named so by professors teaching the three principles from the seminal 1981 paper by Richard Larson, an Emeritus Professor of Astronomy at Yale, describes the observation-based relationships of the structure and supersonic internal motions of molecular clouds where stars form.

The analysis by the UC San Diego researchers is based on recent observational measurements and data from six simulations of the interstellar medium, including effects of self-gravity, turbulence, magnetic field, and multiphase thermodynamics. The supercomputer simulations support a turbulent interpretation of Larson’s relations, and the study concludes that there are not three independent Larson laws, but that all three correlations are due to the same underlying physics, i.e. the properties of supersonic turbulence.

Larson’s original paper, published in the same journal, still inspires new advances in the understanding of molecular cloud structure formation and star formation.

“After decades of inconclusive debate about the interpretation of the correlations among molecular cloud properties that I published in 1981, it’s gratifying to see that my original idea that they reflect a hierarchy of supersonic turbulent motions is well supported by these detailed new simulations showing that the debated complicating effects of gravity, magnetic fields, and multiphase structure do not fundamentally alter the basic picture of a turbulent cascade,” said Larson in response to the new findings by the UC San Diego researchers .

“This paper is essentially the culmination of seven years of research, aided by the use of large-scale supercomputer simulations conducted at SDSC and elsewhere,” said Alexei Kritsuk, a research physicist with UC San Diego’s Physics Department and Center for Astrophysics & Space Sciences (CASS) and lead author of the paper. “Molecular clouds are the birth sites for stars, so this paper relates also to the theory of star formation.”

The researcher team includes Michael Norman, Director of the San Diego Supercomputer Center (SDSC) and a Distinguished Professor of physics at UC San Diego, and Christoph T. Lee, an undergraduate researcher with CASS. SDSC’s Trestles and Triton clusters, and now-decommissioned DataStar system, were used to generate the simulations, as well as the Kraken and Nautilus systems at the National Institute for Computational Science (NICS), at Oak Ridge National Laboratory.

“None of these new findings and insights would have been possible without the tremendous advances in supercomputer simulations that allow not only cosmologists but scientists in countless other domains an unprecedented level of resolution and data-processing speed to further their research,” said Norman, a globally recognized astrophysicist who has pioneered the use of advanced computational methods to explore the universe and its beginnings. “We believe that this paper paints the complete picture, drawing from earlier published works of ours as well as presenting new simulations that have not been published before.”

The research was supported in part by National Science Foundation (NSF) grants AST-0808184, AST-0908740, AST-1109570, and XRAC allocation MCA07S014 under the NSF’s Extreme Science and Engineering Discovery Environment (XSEDE) program.

Media Contact

Jan Zverina, 858-534-5111, jzverina@sdsc.edu
Secondary media contact:
Warren R. Froelich, 858 822-3622, froelich@sdsc.edu

Jan Zverina | EurekAlert!
Further information:
http://www.sdsc.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>