Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego Researchers Advance Explanation for Star Formation

22.10.2013
Study uses computer simulations to provide physical explanation for Larson’s Laws

A newly published paper by three UC San Diego astrophysics researchers for the first time provides an explanation for the origin of three observed correlations between various properties of molecular clouds in the Milky Way galaxy known as Larson’s Laws.

The paper, called ‘A Supersonic Turbulence Origin of Larson’s Laws’, was published this month in the Monthly Notices of the Royal Astronomical Society, Great Britain’s pre-eminent astronomy and astrophysics journal. Larson’s Laws, named so by professors teaching the three principles from the seminal 1981 paper by Richard Larson, an Emeritus Professor of Astronomy at Yale, describes the observation-based relationships of the structure and supersonic internal motions of molecular clouds where stars form.

The analysis by the UC San Diego researchers is based on recent observational measurements and data from six simulations of the interstellar medium, including effects of self-gravity, turbulence, magnetic field, and multiphase thermodynamics. The supercomputer simulations support a turbulent interpretation of Larson’s relations, and the study concludes that there are not three independent Larson laws, but that all three correlations are due to the same underlying physics, i.e. the properties of supersonic turbulence.

Larson’s original paper, published in the same journal, still inspires new advances in the understanding of molecular cloud structure formation and star formation.

“After decades of inconclusive debate about the interpretation of the correlations among molecular cloud properties that I published in 1981, it’s gratifying to see that my original idea that they reflect a hierarchy of supersonic turbulent motions is well supported by these detailed new simulations showing that the debated complicating effects of gravity, magnetic fields, and multiphase structure do not fundamentally alter the basic picture of a turbulent cascade,” said Larson in response to the new findings by the UC San Diego researchers .

“This paper is essentially the culmination of seven years of research, aided by the use of large-scale supercomputer simulations conducted at SDSC and elsewhere,” said Alexei Kritsuk, a research physicist with UC San Diego’s Physics Department and Center for Astrophysics & Space Sciences (CASS) and lead author of the paper. “Molecular clouds are the birth sites for stars, so this paper relates also to the theory of star formation.”

The researcher team includes Michael Norman, Director of the San Diego Supercomputer Center (SDSC) and a Distinguished Professor of physics at UC San Diego, and Christoph T. Lee, an undergraduate researcher with CASS. SDSC’s Trestles and Triton clusters, and now-decommissioned DataStar system, were used to generate the simulations, as well as the Kraken and Nautilus systems at the National Institute for Computational Science (NICS), at Oak Ridge National Laboratory.

“None of these new findings and insights would have been possible without the tremendous advances in supercomputer simulations that allow not only cosmologists but scientists in countless other domains an unprecedented level of resolution and data-processing speed to further their research,” said Norman, a globally recognized astrophysicist who has pioneered the use of advanced computational methods to explore the universe and its beginnings. “We believe that this paper paints the complete picture, drawing from earlier published works of ours as well as presenting new simulations that have not been published before.”

The research was supported in part by National Science Foundation (NSF) grants AST-0808184, AST-0908740, AST-1109570, and XRAC allocation MCA07S014 under the NSF’s Extreme Science and Engineering Discovery Environment (XSEDE) program.

Media Contact

Jan Zverina, 858-534-5111, jzverina@sdsc.edu
Secondary media contact:
Warren R. Froelich, 858 822-3622, froelich@sdsc.edu

Jan Zverina | EurekAlert!
Further information:
http://www.sdsc.edu

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>