Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego Physicists Find Patterns in New State of Matter

30.03.2012
Physicists at the University of California, San Diego have discovered patterns which underlie the properties of a new state of matter.

In a paper published in the March 29 issue of the journal Nature, the scientists describe the emergence of “spontaneous coherence,” “spin textures” and “phase singularities” when excitons—the bound pairs of electrons and holes that determine the optical properties of semiconductors and enable them to function as novel optoelectronic devices—are cooled to near absolute zero.

This cooling leads to the spontaneous production of a new coherent state of matter which the physicists were finally able to measure in great detail in their basement laboratory at UC San Diego at a temperature of only one-tenth of a degree above absolute zero.

The discovery of the phenomena that underlie the formation of spontaneous coherence of excitons is certain to produce a better scientific understanding of this new state of matter. It will also add new insights into the quirky quantum properties of matter and, in time, lead to the development of novel computing devices and other commercial applications in the field of optoelectronics where understanding of basic properties of light and matter is needed.
The research team was headed by Leonid Butov, a professor of physics at UC San Diego who in 2002 discovered that excitons, when made sufficiently cold, tend to self-organize into an ordered array of microscopic droplets, like a miniature pearl necklace.

Using a state of the art refrigeration system, the UC San Diego physicists were able to achieve temperatures ten times colder than that earlier effort, enabling them with an instrument called an interferometer to measure coherence and spin of each pearl or bead within this necklace.

What they discovered was that the exciton particles’ spin is not homogenous in space, but forms patterns around these beads, which they call “spin textures.” They also discovered that a pattern of spontaneous coherence is correlated with a pattern of spin polarization and with phase singularities in the coherent exciton gas.

“It was a surprise to see this pattern,” said Alex High, a graduate student and the first author of the paper. “And it was even more surprising that polarization measurements showed that there was a strong correlation between the coherence and polarization.”

“We are working both on understanding the basic properties of excitons and on the development of excitonic signal processing,” said Butov. “The physics of excitons is interesting by itself. Furthermore, understanding the basic properties of excitons is needed to build excitonic devices in the future.”

The physicists created the excitons by shining a laser on cooled samples of gallium arsenide, the same semiconducting material used to make transistors in cell phones.

The light kicks electrons out of the atomic orbitals they normally occupy inside of the material. And this creates a negatively charged “free” electron and a positively charged “hole.”

The force of electric attraction keeps these two objects close together, like an electron and proton in a hydrogen atom. It also enables the exciton to exist as a single particle rather than a non-interacting electron and hole. However, since the electron and hole remain in close proximity, they sometimes annihilate one another in a flash of light, similar to annihilation of matter and antimatter.

To control this annihilation, Butov and his team separate electrons and their holes in different nano-sized structures called quantum wells. This allows creation of excitons with the required lifetime, about 50 nanoseconds in the experiment.

“During that time, they cool down, form condensates and demonstrate interesting spin physics,” said High. “Eventually the electron and hole recombine and the light comes back out.”

In their experiments, the physicists sent that emission through a complex set of mirrors called an interferometer, which divides the light into two different paths. This allowed them to compare two spatially separated regions of the same sample, enabling them to see the fine details of spontaneous coherence in excitons that had never been seen before.

“Previous experiments required fiber optics to do any sort of optical measurements in a dilution refrigerator,” said High. “But with this equipment, we can actually take pictures of the excitons at extremely low temperatures.’

“This is a very interesting discovery,” he added. “There’s very rich physics involved.”

Other members of the research team were UC San Diego graduate students Jason Leonard and Aaron Hammack; Michael Fogler, associate professor of physics at UC San Diego; Alexey Kavokin of the University of Southampton; and Arthur Gossard and Ken Campman of UC Santa Barbara’s materials science department. The research project was supported by grants from the US. Department of Energy, National Science Foundation and U.S. Army Research Office.
Media Contact
Kim McDonald, 858-534-7572, kmcdonald@ucsd.edu

Comment: Leonid Butov (858) 822-0362, lvbutov@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://ucsdnews.ucsd.edu/pressreleases/uc_san_diego_physicists_find_patterns_in_new_state_of_matter/

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>