Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC Research Pokes Holes in Hubbard Model, Could Help Solve Enigma of High-Temperature Superconductors

24.08.2009
New UBC research has literally and figuratively poked holes in single-band Hubbard physics--a model that has been used to predict and calculate the behavior of high-temperature superconductors for 20 years.

The findings are the first compelling evidence challenging the model under certain conditions, and could necessitate entirely new theoretical approaches to explaining superconductivity in cuprate materials, one of the outstanding mysteries in condensed-matter physics.

"Single-band Hubbard physics has been used for 20 years to predict how superconducting cuprate materials accommodate the 'holes' left by electron removal," says Darren Peets, lead author of the study who conducted the research while a UBC doctoral student.

"But now it looks like the approaches that underpin a large fraction of the theoretical work in the field just don't work across all the ranges of superconductivity we can study. The part of the cuprates' superconducting phase diagram we looked at could exhibit less-bizarre behaviour, or we could be seeing completely new physics, but in either case the usual theoretical approaches do not work here."

The findings were published today in the journal Physical Review Letters.

Cuprates normally act as insulators but become superconductors when electrons are removed--a process known as 'doping' holes into the material. Physicists consider a material optimally doped when it achieves superconductivity at the highest, most accessible temperature.

UBC researchers where able to break the single-band Hubbard model by 'overdoping' a crystal cuprate superconductor past its optimal range--a level of doping that is difficult to achieve and very rarely studied. While the model explains the material's electron behaviour during doping, Peets and his team found the model falls apart as even more electrons are removed.

"By probing the electronic states using tunable-energy X-rays, we were able to show that this region accommodates electron holes in a fundamentally different manner, and that the interactions among the holes already in the material change completely."

Special crystal samples grown at UBC enabled the team to overdope the superconductor to a degree rarely possible with most materials. "Few materials exist in this doping range, and they tend to be very difficult to grow crystals of," says Peets. "In the case of these crystals, thallium oxide--which is toxic--boils off near growth temperatures if you allow it. So a fair bit of work and care is required."

Discovered in 1986, high-temperature superconductors are cuprates--copper oxides. The materials, which exhibit superconducting properties at usually cold temperatures--often in excess of 90 kelvin--remain an enigma despite intense scrutiny. And because their superconducting state persists at more manageable temperatures, more commercial applications are feasible.

Peets, currently a post-doctoral researcher at Kyoto University, conducted the research at the Berkeley Advanced Light Source synchrotron under the supervision of UBC Physics and Astronomy Professor Douglas Bonn, and with UBC chemist and physicist Professor George Sawatzky.

The work was supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs program, the British Columbia Synchrotron Institute, and the Canadian Institute for Advanced Research.

The paper is available online (subscription required):
http://link.aps.org/abstract/PRL/v103/e087402

Chris Balma | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>