Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC astronomers unveil images of 12-billion-year-old space nursery

07.01.2010
A University of British Columbia astronomer has produced the most detailed images of deep space from 12 billion years ago, using data from the European Space Agency's Herschel Space Observatory.

Recently presented at the first International Herschel Science Meeting in Madrid, Spain, the images by UBC post-doctoral fellow Gaelen Marsden reveal tens of thousands of newly-discovered galaxies at the early stages of formation – just one billion years after the Big Bang, when the Universe was a thriving nursery of newly-formed stars.

"These images allow us to see 10 times more galaxies than ever before and with stunning clarity," says Marsden, who has spent the past few years working on similar but lower-resolution images from previously collected data.

"It is incredibly rewarding to see the high sensitivity and resolution that the new Herschel data have enabled. They allow us to take a close look at the stars during early and vital stages of formation, and could change the way we study formation in the future."

NB: The images are available at www.phas.ubc.ca/~halpern/hermes/

Herschel is the largest and most expensive space telescope ever built. It is equipped with three infrared cameras: SPIRE, PACS and HIFI. Herschel was successfully launched on May 14, 2009 aboard an Ariane-5 rocket from Europe's spaceport in French Guiana, for a two-month trip to its observation point, some 1.5 million kilometres above Earth.

Data collected by Herschel are being analysed by the programme's biggest research project, the Herschel Multi-tiered Extragalactic Survey (HerMES). The project consists of more than 100 astronomers from six countries, including UBC Astronomy Professors Mark Halpern and Douglas Scott and post-doctoral fellows Ed Chapin, Gaelen Marsden, Elisabetta Valiante and Don Wiebe.

The HerMES project aims to produce a map of the Universe as it was as far back as 12 billion years ago and is expected to discover hundreds of thousands of new galaxies at early stages of their formation. The first results from the HerMES survey come from the SPIRE camera, in which Canadians are involved through the support of the Canadian Space Agency (CSA).

The SPIRE infrared camera is capable of peering into the coldest dust clouds to see the most distant sites of star formation. Its three filters allow for a colour composite image to be made, where the colour indicates the temperature of the region. This allows astronomers to learn about the physical conditions in some of the most distant sites of star formation and untangle the mysteries of how the first stars formed.

"Seeing such stunning images after just 14 hours of observations gives us high expectations for the full length observations over much larger regions of the Universe," says Seb Oliver, a U.K. lead in the project. "This will give us a much clearer idea of how star formation has progressed throughout the history of the Universe."

This survey was preceded by the successful BLAST project, the Antarctic balloon experiment that inspired a full-length documentary "BLAST! The Movie." BLAST used a replica of the SPIRE camera and provided a glimpse of what was to come.

"While BLAST provided exciting results, the ability to go into space for an extended period of time allows for much more ambitious surveys of the distant Universe," says UBC's Douglas Scott, part of the CSA-funded UBC BLAST team. "The Herschel telescope has the biggest mirror to be launched into space, and this provides images which are less blurred than those collected by BLAST."

A major goal of the Herschel mission is to discover how galaxies were formed and how they evolved to give rise to present-day galaxies like our own Milky Way Galaxy. Professors Halpern and Scott of UBC's Department of Physics & Astronomy are experts in understanding galaxy formation through using far-infrared, millimetre wavelength and microwave radiation and will actively participate in the HerMES project as it produces more results.

"We chose to feature these images first because they show what we believe is the most important result in the initial science release of this satellite – and the key to the early star formation history of the Universe," says Halpern.

Background

The Universe is estimated at 13.7 billion years old. Light observed from these images took 12 billion years to reach us at 300,000 kilometres per second.

SPIRE is one of three instruments on the Herschel Space Observatory. The SPIRE camera operates across three wavelength bands centred on 0.25, 0.35 and 0.5 mm. SPIRE is a UK-led instrument, with an instrument consortium consisting of institutions in many countries, including the University of Lethbridge in Canada, and with a science team involving researchers at Lethbridge, and the Universities of British Columbia, Calgary, McMaster, Toronto and Victoria.

Herschel Multi-tiered Extragalactic Survey (HerMES) is the largest of Herschel's Key Programmes, with 900 hours of observation currently allocated, and is carried out by the SPIRE High-redshift Specialist Astronomy Group. HerMES will map large regions of the sky using cameras that are sensitive to infrared radiation, and is expected to discover over 100,000 galaxies. The light from most of these galaxies will have taken more than 10 billion years to reach us, which means we would see them as they were three or four billion years after the Big Bang. Since the cameras are detecting infrared radiation they see star formation that is hidden from conventional telescopes. It is expected that the SPIRE cameras will catch many of the galaxies at the moment they are forming most of their stars.

More information:

Visit http://research.uleth.ca/spire for the main Canadian SPIRE site, hosted by the University of Lethbridge

Visit http://www.hermes.sussex.ac.uk/ for the most recent information about HerMES

For further information, contact Gaelen Marsden (gmarsden@phas.ubc.ca), Mark Halpern (halpern@phas.ubc.ca), or Douglas Scott (dscott@phas.ubc.ca).

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>