Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Engineering Lifts Off with More Projects for NASA

14.09.2010
If rocket science is complex, it would seem that aerospace engineering must be just as complicated.

Not to Rob Rouleau, a project manager at the University of Alabama at Birmingham Center for Biophysical Sciences and Engineering (CBSE). He considers himself and other aerospace engineers as experts trained to answer a simple set of questions - that is, how will the equipment be used, how to design something that best fits that use and how can the manufacturing match the exact specifications?

The 18-member team in the CBSE has proven it answers all those and more, says Rouleau. The center earns continual funding and a seal of approval from the National Aeronautics and Space Administration (NASA), including a recent extension of more than $70 million to be shared among UAB and three out-of-state engineering firms.

Years ago, NASA determined that it needed better, smaller and more efficient cooling and freezing equipment for use on space shuttles and the International Space Station. Astronauts and others rely on cold storage of biosamples from space to maintain scientific integrity, Rouleau says.

Originally, the CBSE crew developed MERLIN, short for "microgravity experiment research locker incubator," to meet some of those cold-storage needs. Next came the NASA contract for UAB to design and build GLACIER, short for "general laboratory active cryogenic experiment refrigerator," to fulfill a greater demand for storage and safe transport.

When it first debuted in 2008, the cryogenic GLACIER was instantly put to good use. The sturdy freezers have NASA-approved hardware and wiring, and are built to withstand rocket-launch conditions. MERLIN units also are considered an important part of the cold-storage equation in space flight.

"What we end up using is nothing like what you might call off-the-shelf technology. A commercially available dormitory fridge or deep freezer would never make the cut," Rouleau says.

UAB's renewal and extension on its NASA contract includes continually servicing and maintaining GLACER and MERLIN units in use and any new models ordered. Additionally, the renewal requires the CBSE crew to design and build spacewalk equipment, flight-crew health and conditioning systems, environmental control and life support equipment, says Lee Moradi, CBSE's director of research engineering.

"It really puts UAB in a fabulous position because we can bring other disciplines to the table for the new projects," Moradi says. "If parts of the NASA contract mean that we also rely on local contractors to get the work done, that's fine. But it's really our ability to bring the schools of Medicine, Engineering, Physics and many other players into the mix."

Training and education is a part of the engineering work, too. CBSE is aligned with the UAB School of Optometry, a four-year professional school that is recognized nationally for its contributions to eye and vision care knowledge and vision science. CBSE Director Larry DeLucas, O.D., Ph.D., a renowned researcher and former NASA astronaut, is a trained optometrist.

CBSE also regularly employs undergraduate students from a variety of engineering disciplines such as biomedical, civil structures and materials science. The UAB students usually work part-time at CBSE while taking classes; they learn the processes involved in developing next-generation instrumentation and hardware, Moradi says.

GLACIER and MERLIN fit the next-generation description. Both refrigeration/freezer units are now mainstays of storing biosamples and research experiments during trips to and from the space station. CBSE engineers monitor and keep the units running properly from a satellite-linked monitoring station housed at UAB.

GLACIER is compact enough to mount in what's called the shuttle mid-deck, where the crew spends a great deal of time when not in flight mode. The freezer can maintain a temperature of minus-256 degrees Fahrenheit and keep up to 22 pounds of material frozen solid.

MERLIN units are about half the size of GLACIER and can cool to minus-4 degrees Fahrenheit; MERLINs also can be switched to warm their contents, like the incubators used in biophysical science projects. CBSE engineers say they are confident that when the final decision is made, the UAB freezers will meet NASA standard for payloads aboard new orbital vehicles that replace the shuttle fleet.

Rouleau says the types of scientific payloads making their way back to Earth frozen by GLACIER include racks of Petri-dishes filled with microorganisms and blood samples taken from astronauts during orbit or spaceflight. Early test results indicate that GLACIER will meet the qualifications

So while he can't claim to be a rocket scientist, Rouleau does get the satisfaction of knowing his designs are helping NASA do its job - and he can literally watch his work take off. That's because CBSE sends Rouleau and a team to Cape Canaveral, Fla., for the launches and landings.

"To be there when they're installing the freezers on the shuttle and to monitor them remotely is very rewarding," Rouleau says. "To watch astronauts work on your hardware is really exciting."

About UAB
Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham is an internationally renowned research university and academic medical center and the state of Alabama's largest employer. For more information, please visit www.uab.edu.

Troy Goodman | Newswise Science News
Further information:
http://www.uab.edu

Further reports about: Birmingham CBSE Fahrenheit Ferchau Engineering Glacier Merlin NASA Rouleau UAB blood sample space shuttle

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>