Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA scientists discover quantum fingerprints of chaos

09.10.2009
Chaotic behavior is the rule, not the exception, in the world we experience through our senses, the world governed by the laws of classical physics.

Even tiny, easily overlooked events can completely change the behavior of a complex system, to the point where there is no apparent order to most natural systems we deal with in everyday life.

The weather is one familiar case, but other well-studied examples can be found in chemical reactions, population dynamics, neural networks and even the stock market.

Scientists who study "chaos" - which they define as extreme sensitivity to infinitesimally small tweaks in the initial conditions - have observed this kind of behavior only in the deterministic world described by classical physics.

Until now, no one has produced experimental evidence that chaos occurs in the quantum world, the world of photons, atoms, molecules and their building blocks.

This is a world ruled by uncertainty: An atom is both a particle and a wave, and it's impossible to determine its position and velocity simultaneously.

And that presents a major problem. If the starting point for a quantum particle cannot be precisely known, then there is no way to construct a theory that is sensitive to initial conditions in the way of classical chaos.

Yet quantum mechanics is the most complete theory of the physical world, and therefore should be able to account for all naturally occurring phenomena.

"The problem is that people don't see [classical] chaos in quantum systems," said Professor Poul Jessen of the University of Arizona. "And we believe quantum mechanics is the fundamental theory, the theory that describes everything, and that we should be able to understand how classical physics follows as a limiting case of quantum physics."

EXPERIMENTS REVEAL CLASSICAL CHAOS IN QUANTUM WORLD

Now, however, Jessen and his group in UA's College of Optical Sciences have performed a series of experiments that show just how classical chaos spills over into the quantum world.

The scientists report their research in the Oct. 8 issue of the journal Nature in an article titled, "Quantum signatures of chaos in a kicked top."

Their experiments show clear fingerprints of classical-world chaos in a quantum system designed to mimic a textbook example of chaos known as the "kicked top."

The quantum version of the top is the "spin" of individual laser-cooled cesium atoms that Jessen's team manipulate with magnetic fields and laser light, using tools and techniques developed over a decade of painstaking laboratory work.

"Think of an atom as a microscopic top that spins on its axis at a constant rate of speed," Jessen said. He and his students repeatedly changed the direction of the axis of spin, in a series of cycles that each consisted of a "kick" and a "twist".

Because spinning atoms are tiny magnets, the "kicks" were delivered by a pulsed magnetic field. The "twists" were more challenging, and were achieved by subjecting the atom to an optical-frequency electric field in a precisely tuned laser beam.

They imaged the quantum mechanical state of the atomic spin at the end of each kick-and-twist cycle with a tomographic technique that is conceptually similar to the methods used in medical ultrasound and CAT scans.

The end results were pictures and stop-motion movies of the evolving quantum state, showing that it behaves like the equivalent classical system in some significant ways.

One of the most dramatic quantum signatures the team saw in their experiments was directly visible in their images: They saw that the quantum spinning top observes the same boundaries between stability and chaos that characterize the motion of the classical spinning top. That is, both quantum and classical systems were dynamically stable in the same areas, and dynamically erratic outside those areas.

A NEW SIGNATURE OF CHAOS CALLED 'ENTANGLEMENT'

Jessen's experiment revealed a new signature of chaos for the first time. It is related to the uniquely quantum mechanical property known as "entanglement."

Entanglement is best known from a famous thought experiment proposed by Albert Einstein, in which two light particles, or photons, are emitted with polarizations that are fundamentally undefined but nevertheless perfectly correlated. Later, when the photons have traveled far apart in space, their polarizations are both measured at the same instant in time and found to be completely random but always at right angles to each other.

"It's as though one photon instantly knows the result for the other and adjusts its own polarization accordingly," Jessen said.

By itself, Einstein's thought experiment is not directly related to quantum chaos, but the idea of entanglement has proven useful, Jessen added.

"Entanglement is an important phenomenon of the quantum world that has no classical counterpart. It can occur in any quantum system that consists of at least two independent parts," he said.

Theorists have speculated that the onset of chaos will greatly increase the degree to which different parts of a quantum system become entangled.

Jessen took advantage of atomic physics to test this hypothesis in his laboratory experiments.

The total spin of a cesium atom is the sum of the spin of its valence electron and the spin of its nucleus, and those spins can become quantum correlated exactly as the photon polarizations in Einstein's example.

In Jessen's experiment, the electron and nuclear spins remained unentangled as a result of stable quantum dynamics, but rapidly became entangled if the dynamics were chaotic.

Entanglement is a buzzword in the science community because it is the foundation for quantum cryptography and quantum computing.

"Our work is not directly related to quantum computing and communications," Jessen said. "It just shows that this concept of entanglement has tendrils in all sorts of areas of quantum physics because entanglement is actually common as soon as the system gets complicated enough."

Lori Stiles | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>