Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Physicists Thrilled at First Beam in Large Hadron Collider

11.09.2008
UA physicists will give a free public lecture tonight to celebrate the start-up of the Large Hadron Collider, the most powerful particle accelerator ever built.
WHAT: Public Lecture: From the Big Bang to Dark Matter – Turning on the Large Hadron Collider
WHEN: Wednesday, Sept. 10, 7:30 p.m.
WHERE: Physics-Atmospheric Sciences Building, Room 201, 1118 E. 4th St.
After 14 years, the wait is over.
The physicists rejoicing all over the world include a team from The University of Arizona.

At 1:28 a.m. Tucson time, the first beam of protons zipped completely around the Large Hadron Collider – the largest particle accelerator ever built.

UA physicists built part of a massive instrument called ATLAS that is inside the collider.

... more about:
»Big Bang »CERN »Higgs »LHC »Large Hadron Collider

As the proton beam sped through the 17-mile circular tunnel about 100 yards under the Franco-Swiss border, the beam passed through the ATLAS detector.

UA physicist Walter Lampl wrote in an e-mail from Switzerland, "This morning, I followed the events in the CERN Control Centre via a video link. Things progess much faster than I had expected. It took only about 2 hours to get one beam circulating."

The UA is the only university in Arizona involved with the LHC. The LHC is operated by the European Organization for Nuclear Research, known as CERN, located in Geneva, Switzerland.

When the LHC, the largest scientific instrument ever built, is fully operational, it will shoot two proton beams around the collider so the beams smash head-on. The resulting shower of subatomic particles and energy will help physicists learn more about the fundamental workings of the universe.

Lampl reported that by 6 a.m. Tucson time a second proton beam had made a complete circuit of the collider. "I am optimistic that we will see collisions quite soon."

Physicists involved with the LHC anticipate first collisions within the month.

Ken Johns, a UA professor of physics who is also a member of the UA-ATLAS team, reported getting up early in Tucson to start reading the experiment logs and met "an avalanche of email."

"I am happy and excited by the achievement of first beam in the LHC," he wrote in an e-mail. "Now the real work begins. On the accelerator side, collisions must be established. On the ATLAS experiment side, all the detectors must be precisely calibrated. Starting now, we are going to have a frantic, day-and-night battle to understand the ATLAS detector so we can get to the physics."

The normally reserved scientist signed off, "For moment, yippee!!"

More than 150 feet long and 82 feet across and weighing more than 7,700 tons, the ATLAS detector is the world's largest general-purpose particle detector.

Key parts of ATLAS were built in the basement of the UA's physics building.

UA Professor of Physics John Rutherfoord led the team that built part of ATLAS called the Forward Calorimeter. He reported today that he and his colleagues will be slowly turning on that instrument and the instrument may record particles hitting the calorimeter today.

Team member Elliott Cheu, a UA professor of physics, wrote in an e-mail, "We saw the first events in the ATLAS detector and things look great!"

To celebrate the LHC's first beam, the UA physics department will hold the public lecture, "From the Big Bang to Dark Matter: Turning on the Large Hadron Collider," tonight at 7:30 p.m. in Rm. 201 of the Physics-Atmospheric Sciences Building on the UA campus.

Elliott Cheu, associate dean of UA’s College of Science, UA professor of physics, and member of the Large Hadron Collider-ATLAS team, will give the lecture.

Robert N. Shelton, UA president and professor of physics, will deliver the opening remarks.

In his lecture, Cheu will discuss UA's participation in building the LHC and explain how the experiments to be conducted inside the LHC will reveal secrets about our world.

The UA LHC-ATLAS team includes UA physics professors John Rutherfoord, Michael Shupe and Kenneth Johns and Erich Varnes, a UA associate professor of physics.

Shupe and Rutherfoord have been working on the project for 14 years. The team also includes seven UA postdoctoral and graduate students, three engineers and two technicians. More than 20 UA undergraduate students were involved in the research and building of the UA portions of ATLAS.

Rutherfoord, Shupe and other members of the UA's ATLAS team led the design, construction and installation of the Forward Calorimeter, an instrument that measures the position and the tremendous energies of the particles given off when the proton beams collide.

Cheu, Johns and others were responsible for instrumentation for the Cathode Strip Chambers that will detect the high-energy particles called muons.

All of the members of the UA-ATLAS team are in the UA's physics department. Other members of the team are doctoral students Xiaowen Lei, Caleb Parnell-Lampen and Chiara Paleari; Peter Loch, an associate research scientist; Alexandre Savine and Joel Steinberg, research engineers; Walter Lampl, an assistant research scientist; Venkatesh Kaushik, a research associate; Leif Shaver, a staff engineer, senior; Dan Tompkins, an engineer; Michael Starr, a test technician; and Robert Walker, an engineering aide.

When it is operating at full strength, the LHC will produce beams of protons seven times more energetic and about 30 times more intense than any previous machine. Two beams will shoot around the 17-mile underground particle racetrack and collide head-on, creating 600 million collisions per second.

When the protons smash together, they will break apart and elementary particles, the smallest building blocks of matter, will shoot off in all directions.

The aftermath of the collisions will simulate some of the conditions that occurred one-trillionth of a second after the Big Bang that started the universe.

One goal of the experiment will be to understand the origin of mass, Cheu said.

The collisions will occur at enormous energies and therefore create immense masses, according to Einstein's famous E=mc2 formula.

One massive particle that has been predicted but never seen before is the Higgs particle.

"If we find the Higgs, that will be fantastic – and that will be confirmation of what we expect," Cheu said. "But if we don't find it, that may be confirmation of more exotic theories."

Kenneth Johns said another goal of the LHC is figuring out the origin of dark matter.

"Twenty-five percent of the universe is composed of something we don't know or understand," he said.

The ATLAS Collaboration, like other pieces of equipment that make up the LHC, involves an international team of scientists. The international effort involved 2,500 scientists from 37 countries. The 650 participants in the US-ATLAS team come from 43 American universities and national laboratories and represent 21 states.

RESEARCHER CONTACTS:
John Rutherfoord (520-621-2657; rutherfo@physics.arizona.edu)
Kenneth Johns (520-621-6791; johns@physics.arizona.edu)
Elliott Cheu (520-621-4090; elliott@physics.arizona.edu)
MEDIA CONTACT:
Mari N. Jensen (520-626-9635; mnjensen@email.arizona.edu)

Johnny Cruz | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Big Bang CERN Higgs LHC Large Hadron Collider

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>