Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Did UA Mars Camera Find Lost Spacecraft?

Hardware from a Soviet spacecraft that went silent only seconds after making the first successful soft landing on Mars in 1971 might appear in images taken by the HiRISE camera aboard NASA's Mars Reconnaissance Orbiter.
In 1971, the former Soviet Union launched the Mars 2 and Mars 3 missions to Mars. Each consisted of an orbiter plus a lander. Both orbiter missions were successful, although the surface of Mars was obscured by a planet-encircling dust storm. The Mars 2 lander crashed, but Mars 3 became the first successful soft landing on the Red Planet. Unfortunately, after just 14.5 seconds transmission from the lander stopped, for unknown reasons.

Now, Russian citizen enthusiasts following NASA's Curiosity rover identified what may be the Soviet Mars 3 lander hardware while poring over high-resolution photos taken with the High Resolution Imaging Science Experiment, or HiRISE camera, operated by the University of Arizona Lunar and Planetary Laboratory. Mounted on NASA's Mars Reconnaissance Orbiter, or MRO, the camera has been imaging the Martian surface since 2006.

The features in the image resemble four pieces of hardware from the Soviet Mars 3 mission: the parachute, heat shield, terminal retrorocket and lander. A follow-up image by the orbiter from last month shows the same features.

Images of the possible Mars 3 features are available on the UA HiRISE website and the NASA JPL Photojournal.
The predicted landing site was at latitude 45 degrees south, longitude 202 degree east, in Ptolemaeus Crater. The HiRISE camera acquired a large image at this location in November 2007. This image contains 1.8 billion pixels of data, so about 2,500 typical computer screens would be needed to view the entire image at full resolution. Promising candidates for the hardware from Mars 3 were found only very recently.

Vitali Egorov from Russia is the founder and administrator of the largest Russian Internet community about Curiosity. Subscribers of this community engaged in the preliminary search for Mars 3 via crowdsourcing. Expected hardware included the parachute, the heat shield, the terminal brake rocket and the actual lander.

Egorov made scale models of what each piece should look like at the HiRISE image scale and carefully searched the many small features in this large image, finding what appear to be viable candidates in the southern part of the scene. Each candidate has a size and shape consistent with the expected hardware, and they are arranged on the surface as expected from the entry, descent and landing sequence.

One of the group's advisors was Alexander "Sasha" Basilevsky, who is well known to the international science community. Basilevsky contacted Alfred McEwen, principal investigator for HiRISE, suggesting a follow-up image.

MRO acquired this image on March 10. The image was targeted to cover some of the hardware candidates in color and to get a second look with different illumination angles, to provide more information. No color anomalies are seen in the images, which is understandable after more than 40 years of dust deposition. Meanwhile, Basilevsky and Egorov contacted Russian engineers and scientists who worked on Mars 3 for some more information.

The candidate parachute is the most distinctive and unusual feature in the images. It is an especially bright spot for this region, about 25 feet in diameter. The parachute would have a diameter of about 36 feet if fully spread out over the surface, so this is consistent. In the second HiRISE image, the parachute appears to have brightened over much of its surface, probably due to its better illumination over the sloping surface, but it is also possible that the parachute brightened in the intervening years because dust was removed.

HiRISE recently showed that the Curiosity parachute has shifted in the wind, which might also kick off dust. Since the parachute from Viking Lander 1 (1976) can still be seen as a bright area, it is reasonable that a slightly older parachute would also remain visible, perhaps because dust is kicked off.

"The bright spot is definitely an unusual feature," said McEwen. "There is no similar feature anywhere else on these images, which we would expect if it was a natural bright spot of some sort. In the second image with more overhead illumination, it is clearly the brightest spot here."

McEwen added that it differs from the parachutes used by U.S. Mars landers because it isn't elongated due to the lateral velocity of the backshell attached to the parachute. The Soviet design resulted in a vertical descent that is expected to leave a more circular parachute on the ground.

The descent module or retrorocket was attached to the lander container by a chain, and the candidate feature has the right size and even shows a linear extension that could be a chain. Egorov was later informed that at a length length of slightly under 15 feet, the chain is a good match to the line in the image (almost 16 feet). This might have resulted from dragging the chain and disturbing the surface. Nearby the candidate descent module is a feature with the right size and shape to be the actual lander, with four open petals.

The image of the candidate heat shield matches a shield-shaped object with the right size that is partly buried.

"Together, this set of features and their layout on the ground provide a remarkable match to what is expected from the Mars 3 landing, but alternative explanations for the features cannot be ruled out," McEwen said. "Further analysis of the data and future images to better understand the 3-dimensional shapes may help to confirm this interpretation."

"I wanted to attract people's attention to the fact that Mars exploration today is available to practically anyone," Egorov said. "At the same time we were able to connect with the history of our country, which we were reminded of after many years through the images from the Mars Reconnaissance Orbiter."

HiRISE, operated by the UA, was built by Ball Aerospace & Technologies Corp., Boulder, Colo. The Mars Reconnaissance Orbiter Project and Curiosity are managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology in Pasadena.

The HiRISE camera aboard NASA's Mars Reconnaissance Orbiter has been imaging the planet's surface since 2006. (Illustration: NASA/JPL-Caltech/UA)


Images of the possible Mars 3 features are available on the UA HiRISE website ( and the NASA JPL Photojournal: .

UA Lunar and Planetary Laboratory:

Alfred McEwen
Lunar and Planetary Laboratory
The University of Arizona

Alfred McEwen | University of Arizona
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>