Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did UA Mars Camera Find Lost Spacecraft?

12.04.2013
Hardware from a Soviet spacecraft that went silent only seconds after making the first successful soft landing on Mars in 1971 might appear in images taken by the HiRISE camera aboard NASA's Mars Reconnaissance Orbiter.
In 1971, the former Soviet Union launched the Mars 2 and Mars 3 missions to Mars. Each consisted of an orbiter plus a lander. Both orbiter missions were successful, although the surface of Mars was obscured by a planet-encircling dust storm. The Mars 2 lander crashed, but Mars 3 became the first successful soft landing on the Red Planet. Unfortunately, after just 14.5 seconds transmission from the lander stopped, for unknown reasons.

Now, Russian citizen enthusiasts following NASA's Curiosity rover identified what may be the Soviet Mars 3 lander hardware while poring over high-resolution photos taken with the High Resolution Imaging Science Experiment, or HiRISE camera, operated by the University of Arizona Lunar and Planetary Laboratory. Mounted on NASA's Mars Reconnaissance Orbiter, or MRO, the camera has been imaging the Martian surface since 2006.

The features in the image resemble four pieces of hardware from the Soviet Mars 3 mission: the parachute, heat shield, terminal retrorocket and lander. A follow-up image by the orbiter from last month shows the same features.

Images of the possible Mars 3 features are available on the UA HiRISE website and the NASA JPL Photojournal.
The predicted landing site was at latitude 45 degrees south, longitude 202 degree east, in Ptolemaeus Crater. The HiRISE camera acquired a large image at this location in November 2007. This image contains 1.8 billion pixels of data, so about 2,500 typical computer screens would be needed to view the entire image at full resolution. Promising candidates for the hardware from Mars 3 were found only very recently.

Vitali Egorov from Russia is the founder and administrator of the largest Russian Internet community about Curiosity. Subscribers of this community engaged in the preliminary search for Mars 3 via crowdsourcing. Expected hardware included the parachute, the heat shield, the terminal brake rocket and the actual lander.

Egorov made scale models of what each piece should look like at the HiRISE image scale and carefully searched the many small features in this large image, finding what appear to be viable candidates in the southern part of the scene. Each candidate has a size and shape consistent with the expected hardware, and they are arranged on the surface as expected from the entry, descent and landing sequence.

One of the group's advisors was Alexander "Sasha" Basilevsky, who is well known to the international science community. Basilevsky contacted Alfred McEwen, principal investigator for HiRISE, suggesting a follow-up image.

MRO acquired this image on March 10. The image was targeted to cover some of the hardware candidates in color and to get a second look with different illumination angles, to provide more information. No color anomalies are seen in the images, which is understandable after more than 40 years of dust deposition. Meanwhile, Basilevsky and Egorov contacted Russian engineers and scientists who worked on Mars 3 for some more information.

The candidate parachute is the most distinctive and unusual feature in the images. It is an especially bright spot for this region, about 25 feet in diameter. The parachute would have a diameter of about 36 feet if fully spread out over the surface, so this is consistent. In the second HiRISE image, the parachute appears to have brightened over much of its surface, probably due to its better illumination over the sloping surface, but it is also possible that the parachute brightened in the intervening years because dust was removed.

HiRISE recently showed that the Curiosity parachute has shifted in the wind, which might also kick off dust. Since the parachute from Viking Lander 1 (1976) can still be seen as a bright area, it is reasonable that a slightly older parachute would also remain visible, perhaps because dust is kicked off.

"The bright spot is definitely an unusual feature," said McEwen. "There is no similar feature anywhere else on these images, which we would expect if it was a natural bright spot of some sort. In the second image with more overhead illumination, it is clearly the brightest spot here."

McEwen added that it differs from the parachutes used by U.S. Mars landers because it isn't elongated due to the lateral velocity of the backshell attached to the parachute. The Soviet design resulted in a vertical descent that is expected to leave a more circular parachute on the ground.

The descent module or retrorocket was attached to the lander container by a chain, and the candidate feature has the right size and even shows a linear extension that could be a chain. Egorov was later informed that at a length length of slightly under 15 feet, the chain is a good match to the line in the image (almost 16 feet). This might have resulted from dragging the chain and disturbing the surface. Nearby the candidate descent module is a feature with the right size and shape to be the actual lander, with four open petals.

The image of the candidate heat shield matches a shield-shaped object with the right size that is partly buried.

"Together, this set of features and their layout on the ground provide a remarkable match to what is expected from the Mars 3 landing, but alternative explanations for the features cannot be ruled out," McEwen said. "Further analysis of the data and future images to better understand the 3-dimensional shapes may help to confirm this interpretation."

"I wanted to attract people's attention to the fact that Mars exploration today is available to practically anyone," Egorov said. "At the same time we were able to connect with the history of our country, which we were reminded of after many years through the images from the Mars Reconnaissance Orbiter."

HiRISE, operated by the UA, was built by Ball Aerospace & Technologies Corp., Boulder, Colo. The Mars Reconnaissance Orbiter Project and Curiosity are managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology in Pasadena.

The HiRISE camera aboard NASA's Mars Reconnaissance Orbiter has been imaging the planet's surface since 2006. (Illustration: NASA/JPL-Caltech/UA)

LINKS:

Images of the possible Mars 3 features are available on the UA HiRISE website (http://hirise.lpl.arizona.edu) and the NASA JPL Photojournal:

http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA16920 .

UA Lunar and Planetary Laboratory: http://www.lpl.arizona.edu

CONTACT:
Alfred McEwen
Lunar and Planetary Laboratory
The University of Arizona
mcewen@lpl.arizona.edu
520-621-4573

Alfred McEwen | University of Arizona
Further information:
http://www.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>